
More gello writing, how to load test data and the implies
method

Overview

This tutorial will build on the GELLO coding introduced last time, with the calculation of an age for our
test patient, the adding of clinical data to the test file, the importing of that data into the editor and then
looking at the implies method for the first time.

More GELLO writing

Type or cut and past the following code:

Context HL7_v2_VMR_V1::SinglePatient
patient.dob

Run it and choose the patient file from the last tutorial:firstTest.xml

We can see the date of birth is the 21st June 1955, but lets now calculate the patient's age. Assign the
retrieved date of birth to be a local variable so that we can calculate with it:

Let dob = patient.dob

Compile this and note the error message (note again this will run however). Yes, GELLO is strongly
typed and the editor is suggesting the type for the local variable, so add it in. The line becomes:

Let dob: TS = patient.dob

We don't worry about the second message saying there is no final expression as we can say that at the
end - this returns what it is we actually want - i.e. the age; and we will get to that. So here is where we
are up to:

Notice that it says is null, again this is because we have no final expression line as yet._Result_
Add in this code which includes the required final expression:

let ageInSeconds: PQ = factory.TS('today') - dob
Let ageInYrs: PQ = ageInSeconds.convert('yr')
ageInYrs

Don't worry too much about the actual code here, but it involves the use of the factory class and a
method that converts units.

Unfold on the and notice that this Physical Quantity (PQ) typed result has both a unit and a _Result_
value:

It is best to use PQ variables in GELLO instead of further getting the value out as a Real typed value, eg
for laboratory results, as sometimes units change with lab tests and you don't want to be caught out with
'apples and oranges'! [eg think about the two following measurements: 2 cm and 0.7874016 inches. They
are the same measurement in fact; but if we just wrote code using the values, 2 does not equate to
0.7874016]

The good thing about using PQs is that you can perform mathematical operations on them. The full list of
methods the class understands can be seen in the editor, by looking in the Model Explorer like we did for
the CD type:

--

Reading Test Data

Ok, next we will move on to how we load up our test data for a GELLO editing session. This is easily
done by opening the Model Explorer pane (fold up the PQ and the iso_21090_datatype package if you
are still there) and unfolding on the HL7_v2_VMR_V1 package again. Go down to the SinglePatient
node and right click on this. Choose the option and then choose our firstTest.Read Test Data for class
xml file. This loads up the instance data for the model, which can be viewed in the Data Explorer - so far
we have patient class data only.

The implies method

Lets add some allergy data to our file.firstTest.xml

Do this by inserting all of this xml above the final line in l and rename it :firstTest.xm secondTest.xml

<allergies>
 <allergenType code="373873005"
 codeSystem="2.16.840.1.113883.6.96"
 codeSystemName="SNOMED-CT">
 <displayName value = "pharmaceutical / biologic product" />
 </allergenType>
 <allergenCode code="111088007"
 codeSystem="2.16.840.1.113883.6.96"
 codeSystemName="SNOMED-CT">
 <displayName value = "latex (product)" />
 </allergenCode>
 <allergySeverity code="24484000"
 codeSystem="2.16.840.1.113883.6.96"
 codeSystemName="SNOMED-CT">
 <displayName value = "severe" />
 </allergySeverity>
 <allergyReaction code="39579001"
 codeSystem="2.16.840.1.113883.6.96"
 codeSystemName="SNOMED-CT">
 <displayName value = "anaphylaxis" />
 </allergyReaction>
 <identificationDate value="1980"/>
</allergies>
<allergies>
 <allergenType code="373873005"
 codeSystem="2.16.840.1.113883.6.96"
 codeSystemName="SNOMED-CT">
 <displayName value = "pharmaceutical / biologic product" />
 </allergenType>
 <allergenCode code="6369005"
 codeSystem="2.16.840.1.113883.6.96"
 codeSystemName="SNOMED-CT">
 <displayName value = "penicillin -class of antibiotic-" />
 </allergenCode>
 <allergySeverity code="24484000"
 codeSystem="2.16.840.1.113883.6.96"
 codeSystemName="SNOMED-CT">
 <displayName value = "severe" />
 </allergySeverity>
 <allergyReaction code="39579001"
 codeSystem="2.16.840.1.113883.6.96"
 codeSystemName="SNOMED-CT">
 <displayName value = "anaphylaxis" />
 </allergyReaction>
 <identificationDate value="1980"/>
</allergies>

This data accords with the structure of the allergies class in our VMR.

Now lets move to the editor and think about how we will look for a penicillin allergy.
We will use the method. This works for data that is of a CD data type. We can see from the above implies
data that the tagged element has several attributes - namely , and allergenCode- code codeSystem code

. These three are all required by the ISO21090 standard to make a CD.SystemName

So lets load up our new file into the editor as before by right clicking on the secondTest.xml SinglePatient
node in the HL7_v2_VMR_V1 package in Model Explorer and bring it in with . Read Test Data for class
Notice the new allergy data in Data Explorer view. Make sure all attributes are visible and not null. (If
things are null there has usually been an error in the syntax of the xml)
Now to the workspace, let's test we can access this data:

Context HL7_v2_VMR_V1::SinglePatient
Let patientAllergies: Sequence(Allergy) = allergies

We now create a local or temporary variable which will act as parent concept for subsumption checking
in SNOMED CT, using the implies method.

PLEASE NOTE: Licensing restrictions apply to the use of SNOMED (formerly SNOMED-CT) ,
please see for further information. In general if you are a citizen of a country that is a snomed.org
member of SNOMED International, usage is free, but still requires a license.

add this:

Let penicillinClass_SCT:CD = CD{code = '6369005',
 codeSystem =
'2.16.840.1.113883.6.96',
 codeSystemName ='SNOMED-CT'
 }

So that's the parent concept - the class of penicillins. Our test data happens to be at this general level as
well - implies works as "equals" as well as "is a child of". The implies method is a collection operator, and
allergies from the VMR is a sequence; so we use the following syntax and grammar - add:

Let hasPenicillinAllergy: Boolean = allergies->exists(a| a.allergenCode.
implies(penicillinClass_SCT).asBoolean())

hasPenicillinAllergy

Run it:

We can shorten the code needed to create the parent class local variable - by replacing line 4 with:

Let penicillinClass_SCT: CD = factory.CD_SNOMED_CT('6369005')

OK, lets now see what happens if instead of saying the patient is allergic to penicillins they have been all
noted to be allergic to a member of that class, in the EHR; for example amoxicillin (- normally this would
mean they are also allergic to all penicillins):

http://ihtsdo.org/
http://snomed.org

So we change the data in the xml:

<allergies>
 <allergenType code="373873005"
 codeSystem="2.16.840.1.113883.6.96"
 codeSystemName="SNOMED-CT">
 <displayName value = "pharmaceutical / biologic product" />
 </allergenType>
 <allergenCode code="27658006"
 codeSystem="2.16.840.1.113883.6.96"
 codeSystemName="SNOMED-CT">
 <displayName value = "Amoxicillin" />
 </allergenCode>
 <allergySeverity code="24484000"
 codeSystem="2.16.840.1.113883.6.96"
 codeSystemName="SNOMED-CT">
 <displayName value = "severe" />
 </allergySeverity>
 <allergyReaction code="39579001"
 codeSystem="2.16.840.1.113883.6.96"
 codeSystemName="SNOMED-CT">
 <displayName value = "anaphylaxis" />
 </allergyReaction>
 <identificationDate value="1980"/>
</allergies>

Save this as , and run it this time with this data using the secondTest_amoxicillin_allergy.xml Remote
 button:execute with xml patient data

If you get a http socket error its because you are not hitting our terminology service and will need to
contact helpdesk and ask for someone in the Development team to set you up with a newer editor. So
you may get a true result when looking in the Results Explorer:

This demonstrates the real value of a reference terminology such as SNOMED CT. If we were using ICD
- 9 for example we would have to input a set of codes for all penicillin antibiotics, here we just use implies
to see if our allergen is a penicillin - simple as that.

That completes this tutorial.

	More gello writing, how to load test data and the implies method

