Using a library and functions

Overview

GELLO allows the creation of Libraries and functions. A library is a collection of non volatile resources
which in this case is for the consistent implementation and reuse of code. It is useful to tuck away
snippets of code for commonly used methods or to hide the complexity of large and occasionally used
code. This tutorial will demonstrate two examples of the former, one of the latter and then bring them
together by way of worked examples.

Calculate patient age

In an earlier tutorial we wrote GELLO to calculate the age of a patient in years from the VMR instance's
date of birth. Now we will convert that code into a function in a Library called TestLib. Open the GELLO
Editor and in a fresh workspace write:

Package TestLib
imports HL7_v2_VMR V1

EndPackage
Compile and save as TestLib.gello_model

(Make sure you haven't saved it as TestLib.model. | suggest you write or cut and paste the whole file
name including the extension in the File name box after choosing Save As from the menu.)

Now add at about line 4 (making sure we are adding to the GELLO above the EndPackage line):

--functions

Get Agel nYears(vnr: SinglePatient): PQ =

Let dob: TS = vnr.patient.dob

Let agel nSeconds: PQ = factory.TS('today') -
dob

Let agelnYrs: PQ = agel nSeconds. convert('yr')

Let agel nYrsRoundedDown: PQ = factory. PQ
(agel nYrs.value.floor(),"yr")

in
agel nYr sRoundedDown

Compile and save.

So here is our first function in TestLib. The function name is capitalised. We have added a floor() method
on the value of the age, made the patient class explicitly derived from the vmr, and used a line
containing the word 'in'. The reason for the 'in' is that a GELLO expression is intrinsically made up of an in
ner expression and an outer expression with the 'in' linking them.

In previous code in earlier tutes the editor has said we need a final declarative line. When that is added,
that was in fact the outer expression. The code above it was the inner expression and the 'in' was not
mandatory- but it could have been added.

Ok now lets write some GELLO that makes use of this library:

In a new workspace (hit the New button on top left), put:

inports HL7_v2_VMR V1, TestlLib
Cont ext Singl ePati ent

Let age: PQ = CetAgel nYears(Sel f)

age

and run with fourthTest.xml as the data:

® Medical-Objects GELLO IDE (Mowgli)

- Das
Sngepatent <Sngepatint: TSngepatent>
10550621
1023608008
60.983723470705

338388748

The TestLib library is imported in the first line. The function needs a parameter called Self.

Note: the gello file and the gello_model Library file need to be in the same folder when saved on your
machine.

Calculate BMI

Now for a similarly sized function to add to the Library. This one calculates Body Mass index (BMI) for a
patient, making use of the patient's most recent height and weight measurements. We will need to add
the following data to our test file and then save it as fifthTest.xml .

<vitals>
<l-- weight is an Observation-->
<weight>
<observationCode code="27113001"
codeSystem="2.16.840.1.113883.6.96"
codeSystemName="SNOMED-CT">
<displayName value = "body weight" />
<translation code="3141-9"
codeSystem="2.16.840.1.113883.6.1"
codeSystemName="LN">
<displayName value = "Body weight Measured" />
</translation>
</observationCode>
<dateTime value = "20160423" />
<value xsi:type = "PQ" value = "68" unit = "kg" />
</weight>
<weight>
<observationCode code="27113001"
codeSystem="2.16.840.1.113883.6.96"
codeSystemName="SNOMED-CT">
<displayName value = "body weight" />
<translation code="3141-9"
codeSystem="2.16.840.1.113883.6.1"
codeSystemName="LN">
<displayName value = "Body weight Measured" />
</translation>
</observationCode>
<dateTime value = "20101102" />
<value xsi:type = "PQ" value = "66" unit = "kg" />
</weight>
<height>
<observationCode code="50373000"
codeSystem="2.16.840.1.113883.6.96"
codeSystemName="SNOMED-CT">
<displayName value = "body height" />
<translation code="8308-9"
codeSystem="2.16.840.1.113883.6.1"
codeSystemName="LN">
<displayName value = "Body height Measured" />
</translation>
</observationCode>
<dateTime value = "20101102" />
<value xsi:type = "PQ" value = "164" unit = "cm" />
</height>
</vitals>

We have two weights from different dates and a height measurement.
The formula for BMI is Bodyweight in kilograms divided by height in meters squared.

Add this to the functions section of the Library file and save.

Get BM (vnr: Singl ePatient): Real =

Let | atestHt Cbservation: Ohservation = vnr.vitals. height->sortedBy
(dat eTine) ->l ast ()

Let latestH _PQ PQ = | atestH Cbservation. val ue. ocl AsType(PQ . convert
('m)

Let latestW: PQ = vnr.vitals.weight->sortedBy(dateTine)->last().value.
ocl AsType(PQ

Let bm: Real = latestW.value/latestH _PQ val ue. power (2)

in
bm

We are getting the latest height and weight observations and then getting the value out as PQs.

Here's how it should look:

Package TestLib
imports HL7 v2 VMR V1

—-functions
GethgeInYears (vmr:SinglePatient): BQ =

Let dob: TS = wmr.patient.dob

Let ageInSeconds: PQ = factory.TS('today') - dob

Let ageInYrs: PQ = ageInSeconds.convert('yr')

Let ageInYrsRoundedDown: PQ = factory.PQ(ageIn¥rs.value.floor(),'vr')

in
ageInYrsRoundedbown

GetBMI (vmr:Singlek:
L

et 1
Let 1
Let 1
Let bm:
bmi

EndPackage|

and here is some GELLO code to call it:

imports HL7_v2_VMR V1, TestlLib
Cont ext Singl ePati ent

Let bmi: Real = GetBM (Self)
bmi

@ Medica-Otjects GELLO 0E (Mowgi) W T T e TE——
rch View Run Build Tooks Help
1PHO 200080 |s% b EBX DAL 4L
Debogg.. 8 X | [pm.gelo e
o

164
ssig
25.232555098697

sscopeLbm
b
Resilt_

25.2325556983637
25.2828586588697

First degree relatives example

Ok so now we will demonstrate a complex multi-lined function extending the work we did earlier on family
history. It turns out there are lots of SNOMED CT codes for first, second and third degree relatives; so it
makes sense to not have to write all these out every time we want to find say all first degree relatives and
their clinical genomic choices for a given patient.

Our test data says the patient has seven relatives - how many are first degree?
Open the file TestLib.gello_model again.
Make some room above the '-- functions' line.

Insert the following:

--Let statements for SCT family history concepts

Let natural Fat her _SCT_Concept : CD = CD{code='9947008' , codeSystem =
'2.16.840. 1.113883. 6. 96', codeSyst enNanme =' SNOMVED- CT' }

Let father_SCT_Concept : CD = CD{code='66839005', codeSystem =
'2.16.840.1.113883. 6. 96', codeSyst emName =' SNOMVED- CT' }

Let fatherOf Subj ect _SCT_Concept : CD = CD{code='444295003"', codeSystem =
'2.16.840.1.113883. 6. 96', codeSyst emNarme =' SNOMVED- CT" }

Let natural Son_SCT_Concept : CD = CD{code='113160008', codeSystem =
'2.16.840.1.113883. 6. 96' , codeSyst enNanme =' SNOVED- CT' }

Let son_SCT_Concept : CD = CD{code='65616008', codeSystem =
'2.16.840. 1.113883. 6. 96', codeSyst enNanme =' SNOMVED- CT' }

Let sonCOf Subj ect _SCT_Concept : CD = CD{code='444241008', codeSystem =
'2.16.840.1.113883. 6. 96' , codeSyst emName =' SNOMVED- CT' }

Let natural Brot her _SCT_Concept : CD = CD{code='60614009', codeSystem =
'2.16.840.1.113883. 6. 96", codeSyst emNarme =' SNOMVED- CT" }

Let brother_SCT_Concept : CD = CD{code='70924004', codeSystem =
'2.16.840.1.113883. 6. 96' , codeSyst enNanme =' SNOVED- CT' }

Let brot her O Subj ect _SCT_Concept : CD = CD{code='444303004' , codeSystem =
'2.16.840. 1.113883. 6. 96', codeSyst enNanme =' SNOMVED- CT' }

Let tw nBrother_SCT_Concept : CD = CD{code='81276006', codeSystem =
'2.16.840.1.113883. 6. 96', codeSyst emName =' SNOMVED- CT' }

Let fraternal Twi nBrot her _SCT_Concept : CD = CD{code='81467001', codeSystem
= '2.16.840.1.113883. 6. 96' , codeSyst enNane =' SNOVED- CT" }

Let identical Twi nBrother_SCT_Concept : CD = CD{code='78194006', codeSystem
= '2.16.840.1.113883.6.96', codeSyst emNane =' SNOVED- CT' }

These are all the first degree male relatives in the Person hierarchy of SNOMED CT. Add the following to
bring them together in a set:

Let FDR _male_rel atives: Set (CD) = Set{ natural Fat her _SCT_Concept,
fat her _SCT_Concept, fatherOf Subj ect _SCT_Concept,
nat ur al Son_SCT_Concept, son_SCT_Concept,
sonCOF Subj ect _SCT_Concept, natural Brother_SCT_Concept, brother_SCT_Concept,
br ot her OF Subj ect _SCT_Concept, twi nBrother_SCT_Concept, fraternal Twi nBrother_S
CT_Concept,
i denti cal Twi nBr ot her _SCT_Concept }

Compile to check there are no cut and paste errors and save. Now add the same structure for female first
degree relative concepts:

Let natural Mot her _SCT_Concept : CD = CD{code=' 65656005', codeSystem =
'2.16.840.1.113883. 6. 96", codeSyst emNarme =' SNOMVED- CT" }

Let nother _SCT_Concept : CD = CD{code='72705000', codeSystem =
'2.16.840.1.113883. 6. 96' , codeSyst enNanme =' SNOVED- CT' }

Let not her Of Subj ect _SCT_Concept : CD = CD{code='444301002', codeSystem =
'2.16.840. 1.113883. 6. 96' , codeSyst enNanme =' SNOMVED- CT' }

Let natural Daught er _SCT_Concept : CD = CD{code='83420006' , codeSystem =
'2.16.840.1.113883. 6. 96', codeSyst emName =' SNOMVED- CT' }

Let daughter_SCT_Concept : CD = CD{code=' 66089001' , codeSystem =
'2.16.840.1.113883. 6. 96", codeSyst emNarme =' SNOMVED- CT" }

Let daught er Of Subj ect _SCT_Concept : CD = CD{code='444194006' , codeSystem =
'2.16.840.1.113883. 6. 96' , codeSyst enNanme =' SNOVED- CT' }

Let natural Sister_SCT_Concept : CD = CD{code='73678001' , codeSystem =
'2.16.840. 1.113883. 6. 96', codeSyst enNanme =' SNOMVED- CT' }

Let sister_SCT_Concept : CD = CD{code='27733009', codeSystem =
'2.16.840.1.113883. 6. 96', codeSyst emName =' SNOMVED- CT' }

Let sisterOf Subj ect _SCT_Concept : CD = CD{code='444304005', codeSystem =
'2.16.840.1.113883. 6. 96", codeSyst emNarme =' SNOMVED- CT" }

Let tw nSister_SCT_Concept : CD = CD{code='19343003', codeSystem =
'2.16.840.1.113883. 6. 96' , codeSyst enNanme =' SNOVED- CT' }

Let fraternal Twi nSi ster_SCT_Concept : CD = CD{code='29644004', codeSystem
= '2.16.840.1.113883. 6. 96' , codeSyst emNane =' SNOVED- CT" }

Let identical Twi nSi ster_SCT_Concept : CD = CD{code='50058005", codeSystem
= '2.16.840.1.113883. 6. 96' , codeSyst enNane =' SNOVED- CT" }

Let FDR fenmle_relatives: Set (CD) = Set{ natural Mbt her _SCT_Concept,
not her _SCT_Concept, nother O Subj ect _SCT_Concept,
nat ur al Daught er _SCT_Concept, daught er_SCT_Concept,
daught er OF Subj ect _SCT_Concept,
nat ur al Si st er _SCT_Concept, sister_SCT_Concept,
si st er OF Subj ect _SCT_Concept,
twi nSi st er _SCT_Concept, fraternal Twi nSi ster_SCT_Concept,
i dentical Twi nSi ster_SCT_Concept}

In the functions section, above 'EndPackage’, add the following:

Sel ect edRel atives(rel atives: Sequence(Rel ative), matches: Set(CD)):
Sequence(Rel ative) =
rel atives->select(x | matches->includes(x.relationship))

FDR nmal e(fam | yHi story: Fam |yH story): Sequence(Rel ative) =
Sel ectedRel atives(fam | yHi story.relatives, FDR nmale_relatives)

FDR femal e(fam | yHi story: FamilyH story): Sequence(Relative) =
Sel ectedRel ati ves(fam | yHi story.rel atives, FDR femal e_rel atives)

These functions take the relationship CDs we have made, looks for them in the family history for the
patient and then returns either the male first degree relatives or the female first degree relatives as we
might specify. (Looking for male first degree relatives can matter if we are interested in a gender specific
illness such as prostate cancer.)

Ok lets try it out. Save our newly expanded TestLib.gello_model and in a new window write:

inports HL7_v2_VMR V1, TestlLib
Cont ext Singl ePati ent

Let fdr_fenmal e: Sequence(Rel ative) = FDR femal e(fam | yH story)
Let fdr_nale: Sequence(Relative) = FDR nal e(fam |yH story)

Let firstDegreeRel atives: Sequence(Relative) = fdr_femal e->union
(fdr_nale)
firstDegreeRel atives

Running this against fifthTest.xml should give us three first degree relatives (you may need to save the
gello_model file and the new gello files in the same folder and close and then reopen the editor; if you
get nulls):

Some code to use all three examples in one

Ok to finish off here is some code using all of our Functions in the Test Library:

Lets say we wanted to know if the patient, was underweight, under fifty years of age and has a first
degree relative with colon cancer. (This is an example and we wouldn't rely on these criteria in the real
world - but sadly rates of colon cancer in young people are on the rise)

inmports HL7_v2_VMR V1, TestlLib
Cont ext Singl ePati ent

- -under wei ght ?
Let patient_bnm : Real = GetBM (Self)
Let isUnderwei ght: Boolean = patient_bm <= 18.5

-- under fifty?
Let isUnderFifty: Bool ean = Get Agel nYears(Self).value < 50

--FDR with col on cancer?

Let fdr_fenal e: Sequence(Rel ative) = FDR femal e(fami | yHi story)

Let fdr_male: Sequence(Relative) = FDR nal e(fam |yHi story)

Let firstDegreeRel atives: Sequence(Relative) = fdr_femnal e->uni on(fdr_nale)

Let col onCancer: CD = factory. CD_SNOMVED(' 363406005',' mal i gnant tunor of
colon")

Let fdrWthCol onCa: Bool ean = firstDegreeRel atives ->

sel ect (clini cal Genoni cChoi ces -> sel ect(clinical Gbservation.inplies
(col onCancer) . val ue
and (not negati onl ndicator.val ue))->not Enpty())->not Enpty()

--final result

i sUnder wei ght and
i sUnderFifty and
fdrWthCol onCa

Remember the functions in this example are those starting with a capital letter. So in the result we see
this patient has one of the three criteria and so overall we return a False value.

That's the end of this tutorial.

	Using a library and functions

