More gello writing, how to load test data and the implies
method

Overview

This tutorial will build on the GELLO coding introduced last time, with the calculation of an age for our
test patient, the adding of clinical data to the test file, the importing of that data into the editor and then
looking at the implies method for the first time.

More GELLO writing

Type or cut and past the following code:

Cont ext HL7_v2_VMR _V1:: Singl ePati ent
patient. dob

Run it and choose the firstTest.xml patient file from the last tutorial:

@ Medica-Objects GELLOIDE (Mowgl)
e Edt Search View Run Buld Toos Hep

PHO 7000820 4% EEX DML 4L
B x] [ew e Results Eplorer
Na TCoss Do
T Contet Segepotent <Segeratent Tsngepatents
et B 1550621

Model Bxporer | Data Explorer | Resuls Exporer
Stack

[Hane [oes Tose

We can see the date of birth is the 21st June 1955, but lets now calculate the patient's age. Assign the
retrieved date of birth to be a local variable so that we can calculate with it:

Let dob = patient.dob

Compile this and note the error message (note again this will run however). Yes, GELLO is strongly
typed and the editor is suggesting the type for the local variable, so add it in. The line becomes:

Let dob: TS = patient.dob

We don't worry about the second message saying there is no final expression as we can say that at the
end - this returns what it is we actually want - i.e. the age; and we will get to that. So here is where we
are up to:

@ Medical-Objects GELLOTDE (Mowgl)
FEile Edit Search View Run Build Tooks Help
1PHM7000Le0|&s% $HEX DM L4
R X[New fie Resuits Explorer
Context RL7_v2 WA VL singieravient

=1 [ans = [osa

: © Context_ Sndeatent <SngePatient TSngePatient>
* i|Let dob: TS = pacienc.ach © dob i 19550521

Rest_ <ot <nl>

Notice that it says _Result_is null, again this is because we have no final expression line as yet.
Add in this code which includes the required final expression:

| et agel nSeconds: PQ = factory. TS('today') - dob
Let agelnYrs: PQ = agel nSeconds. convert ('yr')
agel nYrs

@ Medicl-Objects GELLO DE (Mowsi)
Eile Edit Search View BRun Build Tools Help
3 & @ ® 0 3 BN 0
PHB7000820@ |H%|dHEX DML L
2] New fie Resus Explorer
Tnsieratien = [ame [oiee Dua
: o Ccomext SagePatent <Sngebatent Tsngebatent>
+ :lLet dob: TS - pacien.dob d ™ 1550521
+ i|Let ageInseconds: BQ = factory.TS('today’) - dob #- agelnSeconds o 15228320005
* :lLet agelntrs: BQ = ageInSeconds.convert('yz') - apein 7 033066325752 11
) 03306325762

“[context &

* 7|agetnvzs

Don't worry too much about the actual code here, but it involves the use of the factory class and a
method that converts units.

Unfold on the _Result_ and notice that this Physical Quantity (PQ) typed result has both a unit and a
value:

=} _Result_ PQ 50,9308592675249 yr

flavorld String <null=

nullFlavor NullFlavor <null =

ENpression ED <null=

originalText ED <null=
uncertainRange IVL_QTY <null=

uncertainty QTY <null=
uncertaintyType String <null =
codingRationale String <null=

translation Sequence(PQR) <null>

value Real 60.9308692676245
unit String yr

It is best to use PQ variables in GELLO instead of further getting the value out as a Real typed value, eg
for laboratory results, as sometimes units change with lab tests and you don't want to be caught out with
‘apples and oranges'! [eg think about the two following measurements: 2 cm and 0.7874016 inches. They
are the same measurement in fact; but if we just wrote code using the values, 2 does not equate to
0.7874016]

The good thing about using PQs is that you can perform mathematical operations on them. The full list of
methods the class understands can be seen in the editor, by looking in the Model Explorer like we did for
the CD type:

Model Explorer
Mame Kind | Detall
= PQ @ dass PQ extends QTY
B - @ operation ~{other: PQ): PQ
@ operation -0:PQ
L @ operation *{other: PQ): PQ
o= @ operation =(other: Real): PQ
e @ operation *(other: Integer): PQ
Bf @ operation Jlother: PQ): PQ
B @ operation [lother: Real): PQ
- @ operation [lother: Integer): PQ
o+ @@ operation +{other: PQ): PQ
B < @ operation <(other: PQ): Boolean
#- o= @@ operation <=(other: PQ): Boolean
B > @ operation >{other: PQ): Boolean
o= @ operation »=(other: PQ): Boolean
abs @ operation abs(: PQ
canonical @ operation canonical(: PQ
codingRationale @ attribute codingRationale: String
- convert @ operation convert{_unit_: String): PQ
inverted @ operation inverted(): PQ
+- max @ operation max(other: PQ): PQ

Reading Test Data

Ok, next we will move on to how we load up our test data for a GELLO editing session. This is easily
done by opening the Model Explorer pane (fold up the PQ and the iso_21090_datatype package if you
are still there) and unfolding on the HL7_v2_VMR_V1 package again. Go down to the SinglePatient
node and right click on this. Choose the Read Test Data for class option and then choose our firstTest.
xml file. This loads up the instance data for the model, which can be viewed in the Data Explorer - so far
we have patient class data only.

The implies method

Lets add some allergy data to our firstTest.xml file.

Do this by inserting all of this xml above the final line in firstTest.xml and rename it secondTest.xml :

<allergies>
<allergenType code="373873005"
codeSystem="2.16.840.1.113883.6.96"
codeSystemName="SNOMED-CT">
<displayName value = "pharmaceutical / biologic product" />
</allergenType>
<allergenCode code="111088007"
codeSystem="2.16.840.1.113883.6.96"
codeSystemName="SNOMED-CT">
<displayName value = "latex (product)" />
</allergenCode>
<allergySeverity code="24484000"
codeSystem="2.16.840.1.113883.6.96"
codeSystemName="SNOMED-CT">
<displayName value = "severe" />
</allergySeverity>
<allergyReaction code="39579001"
codeSystem="2.16.840.1.113883.6.96"
codeSystemName="SNOMED-CT">
<displayName value = "anaphylaxis" />
</allergyReaction>
<identificationDate value="1980"/>
</allergies>
<allergies>
<allergenType code="373873005"
codeSystem="2.16.840.1.113883.6.96"
codeSystemName="SNOMED-CT">
<displayName value = "pharmaceutical / biologic product" />
</allergenType>
<allergenCode code="6369005"
codeSystem="2.16.840.1.113883.6.96"
codeSystemName="SNOMED-CT">
<displayName value = "penicillin -class of antibiotic-" />
</allergenCode>
<allergySeverity code="24484000"
codeSystem="2.16.840.1.113883.6.96"
codeSystemName="SNOMED-CT">
<displayName value = "severe" />
</allergySeverity>
<allergyReaction code="39579001"
codeSystem="2.16.840.1.113883.6.96"
codeSystemName="SNOMED-CT">
<displayName value = "anaphylaxis" />
</allergyReaction>
<identificationDate value="1980"/>
</allergies>

This data accords with the structure of the allergies class in our VMR.

Now lets move to the editor and think about how we will look for a penicillin allergy.

We will use the implies method. This works for data that is of a CD data type. We can see from the above
data that the allergenCode-tagged element has several attributes - namely code, codeSystem and code
SystemName. These three are all required by the ISO21090 standard to make a CD.

So lets load up our new secondTest.xml file into the editor as before by right clicking on the SinglePatient
node in the HL7_v2_VMR_V1 package in Model Explorer and bring it in with Read Test Data for class.
Notice the new allergy data in Data Explorer view. Make sure all attributes are visible and not null. (If
things are null there has usually been an error in the syntax of the xml)

Now to the workspace, let's test we can access this data:

Cont ext HL7_v2_VMR V1:: Singl ePati ent
Let patientAllergies: Sequence(Allergy) = allergies

& Medica-Objects GELLO DE (Mong) =leE
Fie £t Sech Yiew Bun Buid Toos Hep

OIPHY 70002820 &% s LEX BM|LL
] e

We now create a local or temporary variable which will act as parent concept for subsumption checking
in SNOMED CT, using the implies method.

PLEASE NOTE: Licensing restrictions apply to the use of SNOMED (formerly SNOMED-CT) ,
pl see snomed.org for further information. In general if you are a citizen of a country that is a
member of SNOMED International, usage is free, but still requires a license.

add this:

Let penicillinC ass_SCT:CD = CD{code = '6369005',

codeSystem =
'2.16.840.1.113883.6.96',

codeSyst emNanme =' SNOVED- CT'

So that's the parent concept - the class of penicillins. Our test data happens to be at this general level as
well - implies works as "equals" as well as "is a child of". The implies method is a collection operator, and
allergies from the VMR is a sequence; so we use the following syntax and grammar - add:

Let hasPenicillinAllergy: Boolean = allergies->exists(al a.allergenCode.
inmplies(penicillindass_SCT).asBool ean())

hasPenicillinAllergy

Run it:

 Veica Ot GLLOTDE (Mongl)
Ble £t Sech Yiew Bun fuid Tocks b
YHO7000%8%0 &% dHEX DA LL

Ress B

We can shorten the code needed to create the parent class local variable - by replacing line 4 with:
Let penicillinC ass_SCT: CD = factory.CD_SNOVED _CT(' 6369005"')
OK, lets now see what happens if instead of saying the patient is allergic to all penicillins they have been

noted to be allergic to a member of that class, in the EHR; for example amoxicillin (- normally this would
mean they are also allergic to all penicillins):

http://ihtsdo.org/
http://snomed.org

So we change the data in the xml:

<allergies>
<allergenType code="373873005"
codeSystem="2.16.840.1.113883.6.96"
codeSystemName="SNOMED-CT">
<displayName value = "pharmaceutical / biologic product" />
</allergenType>
<allergenCode code="27658006"
codeSystem="2.16.840.1.113883.6.96"
codeSystemName="SNOMED-CT">
<displayName value = "Amoxicillin" />
</allergenCode>
<allergySeverity code="24484000"
codeSystem="2.16.840.1.113883.6.96"
codeSystemName="SNOMED-CT">
<displayName value = "severe" />
</allergySeverity>
<allergyReaction code="39579001"
codeSystem="2.16.840.1.113883.6.96"
codeSystemName="SNOMED-CT">
<displayName value = "anaphylaxis" />
</allergyReaction>
<identificationDate value="1980"/>
</allergies>

Save this as secondTest_amoxicillin_allergy.xml, and run it this time with this data using the Remote
execute with xml patient data button:

wls Help

If you get a http socket error its because you are not hitting our terminology service and will need to
contact helpdesk and ask for someone in the Development team to set you up with a newer editor. So
you may get a true result when looking in the Results Explorer:

@ Medicol-Obects GELLO DE (Mowsi) (=]

Sackan
s e

e o B e ot
ok
Y T [ous

This demonstrates the real value of a reference terminology such as SNOMED CT. If we were using ICD
- 9 for example we would have to input a set of codes for all penicillin antibiotics, here we just use implies
to see if our allergen is a penicillin - simple as that.

That completes this tutorial.

	More gello writing, how to load test data and the implies method

