
GELLO REST API - VA Version
A GELLO query can be made to the server at the following address with a HTTP POST message.

http://hostname:port/rest/gellov2/patientquery

or

https://hostname:tlsport/rest/gellov2/patientquery

POST request format using JSON.

{
"PatientId": string,
"Requests": [
{
"RequestId": string,
"GelloCode": string
},
.....]
}

POST reply from server

{
"PatientId": string,
"Results": [
{
"RequestId": string,
"wasSuccessful": boolean,
"errors": [string,],
"result": { }
},
.....]
}

Formatting
Requests and Responses are formatted using JSON. Fields of JSON objects may appear in a different
order to that documented.

Compact JSON type inference
OCL types can be inferred from the JSON output. The following rules describe how these OCL types can
be inferred.

JSON ---> OCL number "Real"

JSON ---> OCL string "String"

JSON (true/false) ---> OCL boolean "Boolean"

JSON ---> OCL with oclsDefined property = Falsenull "Any"

JSON ---> OCL Usually the element type can be inferred also however, the array "Sequence(Any)".
array may contain mixed types.

JSON ---> OCL class with class name contained in the class property. If this is omitted or object "#type"
of value "Tuple" it is assumed to be an OCL Tuple.

1 Formatting
2 Compact JSON type
inference
3 Request parameters
4 Reply parameters
5 Requirements
6 Example

There are some minor exceptions to the above. A may have the values NaN, +Inf and -Inf, in which Real
case it is represented as a OCL class of type with a sub property of "value" containing the string "Real"
representation of the exceptional Real value. An is descendant of class and could be Integer Real,
inferred from the additional regex " ", however JSON does not make this distinction, and the \-?[0-9]+/
GELLO engine will perform the necessary conversion if required.

Request parameters
PatientId (required) is a key to retrieve a Patient Context against which all GELLO queries in this request
will be made.

Requests (required) is a JSON array containing a list of GELLO queries to be made against the Patient
Context

Each request contains the following JSON object

RequestId (required) is a unique Identifier supplied by the user to identify multiple jobs within the
request. It should not be empty or null.

GelloCode (required) is a string containing a valid GELLO query to be executed in the HL7 context. It
may contain contain white space and line breaks, but these should be escaped according to JSON rules.

Reply parameters
PatientId (required) should be the same key supplied by the request.

Results (required) is a JSON array containing a list of results from the GELLO queries made.

Each result contains the following JSON object. Results may appear out of order but can be collated via
the parameter.RequestId

RequestId (required) matches one and only one RequestId in the Request.

wasSuccessful (required) contains boolean true or false, representing whether the GELLO query was
successful or not.

result (optional) contains the result of the GELLO query in JSON format. The contents of this is
dependent on the nature of the GELLO query. It may be missing or null if the GELLO expression failed.

errors (optional) contains a string list of any errors encountered in compiling and/or executing the
GELLO query, and should contain at least one item if returned false. It may be missing wasSuccessful
or empty if the GELLO expression was successful.

Requirements
In order to return results the calling machine must be setup on the Equator as a valid client for Web
Access. To add the client computer, in the configuration screen of Equator select Web Access Setup,
check the Web Access Allowed check box and then add the computer details to the list of valid
addresses.

Example

Request
{
"PatientId": "abcd",
"Requests": [
{
"RequestId": "12345",
"GelloCode": "Let msg: String = \"Hello World!!!\" msg"
}
]
}

Reply

{
"PatientId": "abcd",
"Results": [
{
"requestID": "12345",
"wasSuccessful": true,
"result": "Hello World!!!"
}
]
}

Example Gello Version 2 you can try:

Let x:Integer = 19
Let y:Real = 100.1011
Let b:Boolean = true
Let z:Real =
If x < 20 and b then
Let a:Real = x *14
in
(a + 20) * y
else
Let a:Real = x *20
in
(a + 25) * y
endif
z

Download the Gello Tool here.

https://download.medical-objects.com.au/GELLO/RemoteGelloTest.zip

	GELLO REST API - VA Version

