GELLO R2 User Manual

Overview

Please note, this is a work in progress... The documents is being revised from an earlier version of
GELLO.

GELLO Programs

A GELLO program is actually an expression (value) which is evaluated by the GELLO compiler.

The complete program must comply with a set of rules called a grammar, and must also also comply with
another set of rules called the semantics. The combination of the grammar and the semantics defines the
GELLO language. The grammar is defined formally by what is called a BNF grammar which is provided
in the Appendices to this document. Many of the semantics are defined by the data type definitions (eg
1ISO 21090 data types) and the Virtual Medical Record (vMR) definition. The data types and VMR are
defined by the GELLO class definition which has been successfully balloted by HL7 as a Draft Standard
for trial use (DSTU) in September 2011.

GELLO programs are comprised of one or more lines of text which are further broken down into tokens
and comments. The tokens are the items which have meaning to the compiler, while the comments are
readable annotations for documenting the program and are ignored by the compiler.

Medical-Objects GELLO complies with the R2 release of the HL7/Ansi GELLO standard.

Why GELLO?

While GELLO has its roots in OCL 2.0, there are important distinctions between GELLO and OCL. You
can read more about this here

Tokens

Tokens are the individual words which make up a GELLO program. Tokens can be identifiers, numbers,
strings and symbols.

Identifiers

Identifiers are used in GELLO to represent variable names, type names, property names and method
names.

Identifiers can be 1 or more characters in length, and must start with "A-Z", "a-z" or "_". Subsequent
characters must be "A-Z", "a-z", "0-9", or " _".

In GELLO R2, identifiers are case sensitive, which means that identifiers with the same alphabetic letters
but with a different case will be treated by the compiler as different names. There is no limit to the
number of characters in an identifier.

Here are some examples of identifiers.

1 Overview
2 GELLO Programs

2.1 Why GELLO?
2.2 Tokens
2.3 Identifiers

3 Numbers

3.1 Strings
3.2 Symbols
3.3 Comments
3.4 Multi-line
Comments

4 Values and Types

4.1 Simple Types
4.2 Integer Type

4.3 Real Type

4.4 String Type

4.5 Boolean Type
4.6 Enumeration
Types

4.7 Collection Types
4.8 Tuple Types

4.9 Class Types
4.10 Class Attributes
4.11 Class Operations

5 Expressions

5.1 Operands

5.2 Literals

5.3 Integer Literals
5.4 Real Literals

5.5 String Literals
5.6 Boolean Literals
5.7 Collection Literals
5.8 Tuple Literals

5.9 Variable values
5.10 Class Attribute
Values

5.11 Class Operation
Values

5.12 Operators

5.13 Arithmetic
operators

5.14 Boolean
operators

5.15 Class operators
5.16 Collection
Operators

5.17 Select Operator
5.18 Reject Operator
5.19 Collect Operator
5.20 ForAll Operator
5.21 Exists Operator
5.22 Iterate Operator
5.23 IncludesAll
Operator

5.24 SortBy Operator
5.25 FirstN Operator
5.26 LastN Operator
5.27 ElemAt Operator
5.28 Size Operato
5.29 IsEmpty
Operator

5.30 NotEmpty
Operator

5.31 Sum Operator
5.32 Reverse
Operator

5.33 Min Operator
5.34 Max Operator
5.35 Flatten Operator
5.36 Last Operator
5.37 Average
Operator

5.38 Variance
Operator

https://kb.medical-objects.com.au/display/PUB/GELLO+vs+OCL

X

X

al

A20

observation

Test _for_Creatinine

X201
_This_is_also_an_identifier

The BNF syntax for a GELLO variable is

<ldentifier: ["A ="z mar-mz U ([TAT-TZ Attt -]) x>

PR —

Numbers

Numbers are used in GELLO to represent Integer or Real values.

All numbers must start with a digit ("0-9") followed by digits ("0-9"), optionally a period ("."), more digits
("0-9") and an optional exponent.

An exponent is represented by the letter "E" or "e" followed by a signed integer. It means that the first
part (the mantissa) is multiplied by 10 to the power of the exponent. i.e. 1.1e3 means 1.1 times 10 to the
power 3 which is 1100

Integer numbers do not have a period or exponent (i.e. it is a string of digits only). In practice there is an
upper and lower limit of what can be represented in computable form.

Here are some examples of Integer numbers.

0 the value Zero

1 the value one

15 the value fifteen

2345 the value two thousand, three hundred and forty five

812838482 and so forth....

Real numbers are distinguished from Integer numbers by having a "." and an exponent. In practice there
are limits to the size of the exponent and also the number of digits in the mantissa which can be
represented in computable form.

Here are some examples of Real numbers.

0.0 the value zero as a real number
1.0 the value one as a real number
1.0e0 the same value as above

0.15 the value 15 divided by one hundred (or three twentieths)

5.39 Includes
Operator
5.40 Including
Operator
5.41 Excluding
Operator
5.42 Intersection
Operator
5.43 Union Operator
5.44 Join Operator
5.45 Conditional
Expression

6 Statements
6.1 Let Statement
6.2 Final Expression
6.3 Context
Statement

7 The Data Model

8 Using Collections
8.1 Select Operator
8.2 Collect Operator

9 Using Physical Quantities
9.1 Addition and
Subtraction
9.2 Multiplication
9.3 Division
9.4 Example of PQ
use

10 Appendices
10.1 GELLO R2
EBNF

20.201 twenty plus two hundred and one thousands
3.141596254 = an approximation of Pi

1.0E2 the value one hundred (one times ten to the power of two)
4.2E-30 4.2 divided by ten to the power of thirty

4.20.0e-32 the same value as above

The BNF syntax for integer and Real numbers is as follows

<l nt eger Const ant : (["0o"-"9"])+ >
<Real Const ant : (["0"-"9"])+ "."(["0"-"9"])* (["E'|"e"](["+","-"])?
([ro"-"9"1)*)2 >

Strings
Strings are used to represent textual values in GELLO expressions.

They are started with a quotation character (either " or) and are terminated by the same character.
Strings are not allowed to continue over omre than a line, and you can place any character in a string
except for the surrounding quotation character.

If you wish to add control character to a string, they can be embedded with the standard XML quoting
practice using the form "&ssss;". The following escape symbols are recognised.

"&nl;" = Add a new line (carriage return + line feed)

Add a double quote to the string (")

Add a single quote to the sting (")

Here are some examples of strings.

"this is a string'

"this is also a string"

"this is a string with some quotations nmarks. "GELLO' is the best
| anguage! !'1"

"multi line string.&nl;another line.&nl;and another."

The syntax of strings is defined as follows.

<StringConstant: (G T (o I N s R U 1 T W I S (o I R W PR o D
ey s

Symbols

Symbols are characters or combinations of characters which had special meaning in GELLO. Here is a
list of them.

* 1

n =

o e e — —~ -

Reserved Words

Reserved words are identifiers which are special in GELLO. They cannot be used as identifiers since
they have special meaning within the grammar of GELLO. In GELLO R2, reserved words are case-
sensitive, however some reserved words may have a capitalized variant.

Here is a list of them.

and or xor not div nod min max

iterate join

Let

If then el se Endif

Cont ext

Set Bag Sequence Tuple Enum

Integer String Real Bool ean true fal se unknown null factory
Package EndPackage O ass extends

Comments

Comments can be either single-line comments or multi-line comments. Comments are used to annotate
the GELLO program without affecting how the program functions.

Single-line Comments[edit]
A single line comment starts with the "--" characters and can appear anywhere on a line, even on lines
with GELLO source. All characters from the "--" up until the end of the line are treated as comments.

Some examples of single line comments are...

-- this is a single line coment.

-- Al characters are ignored up to the end
of the line.

-- the following is a line of conmented GELLO source.
-- let a:integer = 52

-- the following is a comrent after some GELLO source.
let b:string = 'sone string' -- our tenporary variable "b" has the
val ue "sone string"

Multi-line Comments

A multi-line comment starts with the character sequence "/*" and finishes with the character sequence "*
[". They can span more than one line or simple be embedded within an existing line.

Here are some examples of multi-line comments.

/* this GELLO conment spans nmany |ines.

Al the text here is commented and will be ignored by the GELLO conpiler.
We can put anything we like in here, including strings, nunbers synbols
and so forth as long

as it doesn't contain the multi-line coment end string.
This comment will end after here */

/*

Anot her comment

*/

/****** thIS too ********/

let a: integer = /* an enbedded comment */ 20

/* we can put one here too */ if a =20 then /* and here */ 50 else /*
bl ah... */ endif

Values and Types

All expressions in GELLO have a Value and a Type. The Value is the actual representation of the Type.
Types can be either Simple Types, Collection Types, Tuple Types or Model Types

Simple Types
Simple types represent the most fundamental pieces of data that a GELLO program can work with.

GELLO has several simple data types available. Integer, Real, String and Boolean

Integer Type

The Integer type represents values which are whole numbers. They can be positive or negative numbers
and also include the value zero. MO-GELLO-R2 Integer values are stored as Extended precision real
numbers (80 bits) with an exponent of Zero. This means they have at most 64 bits of precision (from
-9,223,372,036,854,775,807 up to +9,223,372,036,854,775,807)

Real Type

The Real type represents values which are numbers which are not necessarily integers. Integers are a

subset of Real numbers. MO-GELLO Real values are stored as Double precision real numbers (64 bits).

String Type

The String type represents values which are sequences of characters. Strings in MO-GELLO can have
any length within the constraints of the available memory in the executing environment, and the
characters are taken from the extended ASCII character set.

Boolean Type

The Boolean type is used to represent GELLO truth values. Values of this type can only be true, false or
unknown.

Enumeration Types

Enumeration types are a specialization of the String type, however they are only permitted to have values
that match the enumeration type. Any string value is permitted as an enumeration value.

For example a variable with enumeration type Colour could be defined as follows.

Let colour: Enun{"red", "blue", "yellow', "green", "violet") = "blue"

At the moment, the GELLO specification is incomplete with regard to using enumeration types, however
if the underlying data model uses enumeration types, these may be imported by the GELLO program.

Collection Types

A collection is a list of data values, each with the same data type. The data values can be either of a
simple type like integer or string, or can be complex data types like collections, tuples or classes. The
components or items of a collection are formerly known as collection elements.

There are three kinds of collections, Sets, Bags and Sequences.

A Set is a list of items which are all distinct (i.e. there can be no identical items). They may be in any
order, however the ordering is unimportant when comparing two sets.

A Bag is similar to a Set with the exception that more than one item of the same value is allowed, and
ordering is unimportant when comparing two bags.

A Sequence is much the same as a bag, except that the order of the items is important.

Here are examples of Sets.

Set{ 1, 2, 3, 4, 5} -- a set of the first 5 integers.

Set{ "apple", "orange", "pear" } -- a set of strings with values
corresponding to the nanes of fruit

Here are examples of Bags.

Bag{ 1, 2, 2, 3, 4, 4, 4, 5} -- alist of integer values
-- (with duplicates)

Bag{ 1, 2, 3, 2, 4, 5, 4, 4} -- sane as above even though the ordering is
di fferent

Bag{ "apple", "orange", "pear", "apple" } -- a list of strings with values
corresponding to the nanmes of fruit

Here are examples of Sequences.

Sequence{ 1, 2, 2, 3, 4, 4, 4, 5} -- alist of integer values (with
dupl i cates)

Sequence{ 1, 2, 3, 2, 4, 5, 4, 4} -- different to above since the
ordering is inportant

Sequence{ "apple", "orange", "pear", "apple" } -- a list of strings with
val ues corresponding to the names of fruit

Tuple Types

Tuple types are similar to Collections in that they represent a group of related data items. However,
unlike collections where the collection elements must be all of the same type, in tuples they may be of
different types. Each element of a tuple is accessed by its name, and has its own distinct element type.

Here is an example of a let statement with a tuple representing the contact details and of a patient. The
tuple definition starts with "tuple(" and ends with ")". Tuple types may be nested within other complex
types, and other types can be nested within a tuple type.

Let patient_contact:

Tupl e(surnanme: string,

gi vennane: string,

street nunber: integer,
streetnanme: string,

city: string,

zi pcode: integer

country: string)

= Tupl

surnane = "Smith",

gi vennane = "Fred",

street nunber = 123,
streetnane = "Lowdown St",
city = "MbTown",

zi pcode = 998877,

country = "Republic of MdTownom a"}

The syntax of tuple type definitions is

Tupl eType ::= <Tuple> "(" Tupl eTypeList ")"
Tupl eTypeLi st ::= Tupl eTypeList "," Tupl eTypeEl enent
Tupl eTypeLi st ::= Tupl eTypeEl ement
Tupl eTypeEl enent ::= <ldentifier> ":" Type
Class Types

Class types are similar to tuple types in that that have named elements which are called Attributes.
Classes also have Operations which can be performed on the class. In general, the data model supplied
to the GELLO program will have a number of classes which represent components of the data model.

Class Attributes

Enter topic text here.

Class Operations

Enter topic text here.

Expressions

Expressions form the foundation of GELLO programs and are made up of operands and operators.
Generally an expression is written as a list of operands separated by operators. Operators have
precedence, which means the order in which the operators will be applied when evaluating an expression
with more than one operator. The precedence of operators may be overridden by the use of "(* and ")" to
group sub-expressions.

conceptually in grammatical form

Expression ::= Expression Operator Operand

Expressi on ::= Operand
and

Operand ::= Literal

Operand ::= Variable

Operand ::= UnaryQOperator Operand

Operand ::= "(" Expression ")"

Operand ::= Conditional Expression
Operands

operands can be either literals, variable values, or the results of attributes, operations or queries.

Literals

Literal operands are operands which have fixed literal values, such as numbers, strings, or even complex
literals like collection or tuple literals.

Integer Literals

Integer literals are values which are integer tokens. see Numbers

Real Literals

Real literals are values which are real tokens. see Numbers

String Literals

String literals are values which are string tokens. see Strings

Boolean Literals

Boolean literals are values which are boolean tokens. see Boolean Type

Collection Literals

the syntax of Collection Literals is as follows

Col l ectionLiteral Exp ::= Col |l ecti onType "{" CollectionLiteral Parts "}"

Col l ectionLiteral Exp ::= CollectionType "{" "}"

Col lectionLiteral Parts ::= CollectionLiteral Parts "," CollectionLiteral Part
Col l ectionLiteral Parts ::= Coll ectionLiteral Part

Col l ectionLiteral Part ::= Expression

Col l ectionLiteral Part ::= CollectionRange

Col | ecti onRange ::= Expression ".." Expression

Tuple Literals

the syntax of Tuple Literals is as follows

Tupl eLiteral Exp ::= <Tuple> "{" Tupl eDefList "}"
Tupl eDef Li st ::= Tupl eDefList "," Tupl eDef

Tupl eDef Li st ::= Tupl eDef

Tupl eDef ::= <ldentifier> ":" Type "=" Expression
Tupl eDef ::= <ldentifier> "=" Expression

Variable values

A variable operand is represented by a variable name, and can be modified by any number of attributes
or operations.

for example, in the program

I
=

Let a: Integer
Let b: Integer = a + 25
b

there are variables a and b.

Whenever a variable is referred to, it is replaced in the expression by its value (in this example a has the
value 1 and b has the value 26.

In this example,

Let sodiuns = observations->sel ect(code. name = "Sodi un')
sodi uns. val ue

there are several variable values.

observations code sodiums

Class Attribute Values

A class attribute value is specified by following an expression operand by a "." and an identifier
representing the attribute name. The resulting operand can be used as operand. An attribute means the

same as the property of a class in other object oriented languages.

for example, if a variable named obs of type Observation has the attributes name and age, these
attributes can be written as

obs. nanme

and

obs. age

The operator "." may be repeatedly applied to the operand.

for example, one can write

obs. nane. sur nane

to represent the surname attribute of the name attribute of the Observation obs

The syntax of a Class Attribute is

Variable ::= Variable . <ldentifier>

Class Operation Values

Class Operation values are similar to attributes, but instead return the result of an operation applied to a
variable operand. An operation means the same as a method of a class in other object oriented
languages.

for example, if there is a variable patient of class Patient, and it has an operation

prescription_count _for_recent_years(numyears: |nteger): |nteger

to count the number of prescriptions in the last N years, one could get the number of prescriptions in the
last year by writing...

patient.prescription_count_for_recent_years(1)

the syntax of a Class Operation is

Variable ::= Variable . <ldentifier> "(" Params ")"

Operators

Expression Operators represent an operation which can be performed on one or two values or Operands
of an expression. An operation on a single operand is called a Unary Operator and an operation on two
operands is called a Binary Operator. Generally the form is either

Unar yOper at or Oper and

or

Operandl Bi naryQperat or Operand2

Arithmetic operators

The following operators work on Reals and Integer types.

+ addition of two operands

- subtraction of two operands

* multiplication of two operands
/ division of two operands

- negation of a single operand

The following operators work on Integer types only

div integer division of two operands
nod i nteger nodul o division (renainder after division) of two operands

Boolean operators

The following operators work on Boolean types. In GELLO, the Boolean operators also work for unknown
values.

and the logical and of two operands

or the logical inclusive or of two operands
xor the logical exclusive or of two operands
not the logical inverse of one operand

Here is a table outlining the results of each Boolean operator

A B AandB AorB A xor B Not A
False False False False False True
False True False True True True
True False False True True False
True True True True False False
False Unknown = False Unknown ' Unknown | True
Unknown | Unknown | Unknown | True Unknown | False
Unknown | False False Unknown | Unknown ' Unknown
Unknown ' True Unknown | True Unknown = Unknown

Unknown | Unknown | Unknown | Unknown | Unknown & Unknown

Class operators

There are several class operators available.
value.isUndefined() returns true if the value is null or undefined.
value.isDefined() returns true if the value is not null or undefined.

value.isTypeof(name) returns true if the class of value is name.

Collection Operators

A collection operator is an operator that operates on collection classes only. To understand how
collection operators are used, see Using Collections.

It takes the form <collection> "->" <collection operator> "(" <parameters> ")"

Here is an example using a collection operator.

let sodiums = observations -> select(code.name = "Sodium")

This means select from the collection observations only observations which have the attribute code with
a name of "Sodium".

Some collection operators may take one or more conditions as parameters, while others may take a
number, and some no parameters at all.

There are many predefined collection operators in GELLO. Here is a list of them with some examples of
usage.

Select Operator

sel ect (Bool eanExpr essi on)

sel ect (v | bool ean-expressi on-wi th-v)

sel ect (v: Type | bool ean- expressi on-w t h-v)

observations->sel ect (code. name = 'sodiuni)

observations->sel ect (obs | obs.code.value > 20 or obs.code.name = 'Na')
observations->sel ect (obs: EncodedCbservation | obs. encoded. code. val ue > 20
or obs.code.nane = 'Na')

Reject Operator

rej ect (Bool eanExpr essi on)

reject(v | bool ean-expression-w th-v)

reject(v: Type | bool ean-expression-w th-v)

observations->reject (code. nane = 'sodiun)

observations->reject(obs | obs.code.value > 20 or obs.code.name = 'Na')
observations->rej ect (obs: EncodedCbservation | obs. encoded. code. val ue > 20
or obs.code.nane = 'Na')

Collect Operator

col | ect (Expressi on)

collect(v | expression-wth-v)

col lect(v: Type | expression-wth-v)

observations->col | ect (code. nane)

observations->col | ect (obs | obs. code. val ue)

observations->col | ect (obs: EncodedCbservati on | obs. encoded. code. val ue)

ForAll Operator

for Al | (Bool eanExpr essi on)

forAll (v | bool ean-expression-wth-v)

forAll (v: Type | bool ean-expression-with-v)

observations->forAll (code. nane = 'sodiunm)

observations->forAll (obs | obs.code.value > 20 or obs.code.name = 'Na')
observations->f or Al | (obs: EncodedCbservation | obs. encoded. code. val ue > 20
or obs.code.nane = 'Na')

Exists Operator

http://code.name

exi st s(Bool eanExpr essi on)

exi sts(v | bool ean- expressi on-wi th-v)

exi sts(v: Type | bool ean- expressi on-w t h-v)

observati ons->exi st s(code. name = 'sodi umni)

observations->exi sts(obs | obs.code.value > 20 or obs.code.name = 'Na')
observati ons- >exi st s(obs: EncodedCbservation | obs. encoded. code. val ue > 20
or obs.name = 'Na')

Iterate Operator

iterate(el em Type; result: Type = expression | expression-wth-el emand-

resul t)

observations->iterate(i:integer;

r:integer = 0 |

if code.name = "Na' thenr + 1 elser endif
)

IncludesAll Operator

i ncl udesAl | (Col | ecti onExpressi on)
observations->col | ect (code. nane) - >i ncl udesAl | (' Na')

SortBy Operator

sort By(Expressi onLi st)
observations->sort By(code. nane, dat e)

FirstN Operator

firstN(Integer Expression)
observations->firstN(10)

LastN Operator

I ast N(I nt eger Expr essi on)
observations- >l ast N(10)

ElemAt Operator

el emAt (1 nt eger Expr essi on) observati ons- >el emAt (5)

Size Operato

si ze() observati ons->si ze()

ISEmpty Operator

i SEnpt y() observati ons->i seEnpty()

NotEmpty Operator

not Enpt y() obser vat i ons- >not Enpt y()

Sum Operator

sun() observati ons->col | ect (val ue) - >sum()

Reverse Operator

reverse()observations->reverse()

Min Operator

m n() observati ons->col | ect (val ue)->mi n()

Max Operator

max() observati ons->col | ect (val ue) - >max()

Flatten Operator

flatten()observations->flatten()
First Operator[edit]
first()observations->first()

Last Operator

| ast () observati ons->l ast ()

Average Operator

aver age() observati ons->col | ect (val ue) - >aver age() st dev() observati ons-
>col | ect (val ue) - >stdev()

Variance Operator

vari ance() observati ons->col | ect (val ue) - >vari ance() count (obj ect)
observations->col | ect (code. nane) - >count (' Na')

Includes Operator

i ncl udes(obj ect) observations->col | ect (code. nane) - >i ncl udes(' Na')

Including Operator

i ncl udi ng(el ement) observati ons->col | ect (code. nane) - >i ncl udi ng(' Na')

Excluding Operator

excl udi ng(el ement) observati ons->col | ect (code. nane) - >excl udi ng(' Na')

Intersection Operator

intersection(set)all _allergies->intersection(airborne_allergies)

Union Operator

uni on(set)new_ al | ergi es->i ntersection(ol d_allergies)

Join Operator

join(coll ections; joinedproperties; bool eanExpressi on; orderbyExpression)

Conditional Expression

A Conditional Expression is an expression which is determined by a boolean value. If the expression
between If and Then evaluates to true, the resulting expression is that between the Then and Else
symbols, otherwise it is the expression between the Else and Endif symbols.. An important aspect of
Conditional Expressions is that the two expressions alternatives are actually Expression Blocks which
means one can have additional Let statements inside the Conditional Expression. It is important to
remember that any variables defined in an expression block are only local to that block.

The syntax is as follows.

Condi ti onal Expression ::= <If> Expressi on <Then> Expressi onBl ock <El se>
Expr essi onBl ock <Endi f >

Statements

A GELLO program typically consists of a number of statements one after the other. Usually a GELLO
program contains a number of Let statements followed by a final Expression. It is completely valid to
have a final Expression without any Let statements. The combination of statements and final expression
is called an Expression Block. Expression Blocks can also appear inside Conditional Expressions.

There are several kinds of statements, Let Statements, Context Statements and Final Expression.
Statements are joined together into statement lists. Since GELLO is a declarative language, the order of
statements should not affect the end result, however variables must be defined before they are used so
any let statements defining them will need to be placed earlier in the statement lists before those variable
are used.

The syntax of the statement section of a GELLO program is as follows

GELLO Program :: = ExpressionBl ock

ExpressionBl ock ::= StatenentList Final Expression
StatenentList ::= StatenentList Statenent

St at ement Li st =

Fi nal Expression ::= Expression

Fi nal Expression :: =

Statenment ::= Let Statenent

Stat ement ::= Context Statement

Let Statement

The Let Statement allows a GELLO expression to be assigned to a variable name. It is a very useful
concept in that it allows GELLO expressions to be broken down into meaningful pieces, and also allows
frequently used values to be reused within the GELLO program. A Let Statement can also be referred to
as a Variable Declaration.

GELLO variables differ to those in typical computer languages in that they may only be assigned a value
once which means that GELLO variables are effectively constant for their lifetime. The reason for this is
that GELLO is derived from OCL which belongs to the family of functional languages.

If you are a programmer of commonly used programming languages like C or Pascal, it requires some
rethinking to grasp the ways in which GELLO expressions are written. However, with a little practice
complex GELLO programs can be effectively structured through the use of GELLO variables.

Some examples of Let Statements are...

Let a: Integer = 25

Let j = observation->sel ect((code. code="2951-2") or (code.code = "2823-3"))
Let alt_ok: Bool ean =

If alt_obs.isdefined() then

alt_obs.value < alt_obs.reference_range.upper_limt * 2

el se

unknown

endi f

In GELLO-R2, the reserved word "Let" is case-sensitive. Also, in MO-GELLO, the type of the variable is
optional and may be omitted. The type of the variable can be inferred from the expression which is used
to create it. If the type is specified, the assigned expression must be compatible with that type.

The syntax of Let statements is as follows.

Let Statement ::= <Let> <ldentifier> Optional Type "=" Expression
Optional Type ::= ":" Type
Opt i onal Type :: =

Final Expression

The Final Expression must be the last statement in a GELLO program. It is the result of executing the
GELLO program. In MO-GELLO, this is currently optional, and when omitted, the GELLO program
returns the null (or undefined) expression value.

In the following GELLO program

Let a: Integer 50
Let b: Integer = (a*100 + 20) div 2
a+b

the final expression is the last line

atb

In typical use, most GELLO programs will contain a Final Expression.
The syntax is

Fi nal Expression ::= Expression
Fi nal Expression ::=

Context Statement

The Context Statement is mainly used when GELLO is run as an query language within an existing class
context. The <ClassName> parameter identifies the class context of the instance data for which GELLO
query is being applied in an embedded GELLO environment. You can optionally assign a identifier to the
class instance. If one is not given, the default name "self" is assigned.

For example, a messaging infrastructure might wish to execute a GELLO query on a message
representing an instance from the data model. The instance root class should be the one specified in the
Context statement (e.g. the SinglePatient class from the VMR model). Any Let statements or Final
Expressions following the Context Statement can reference all the published attributes and operations of
the underlying context class directly.

The syntax of a Context Statement is as follows.

Context Statement ::= <Context> [<ldentifier> :] <Cl assNane>

The Data Model

All GELLO program will have a predefined environment which is available to it. This environment will
contain a list of predefined classes which can be used. When using the GELLO Interactive Debugging
Environment (IDE) you can use the Class Explorer tab to explore the classes available with their
properties and methods (attributes and operations).

Here is a list of some of the classes available....

NOTE - this only refers to the MO VMR model in MO-GELLO (GELLO R1)

Absol uteTi me

Absol ut eTi nel nt er val
Al |l ergy

Al l ergi es
Archetypes

Bool ean

CodedVal ue

Concept Rel ati onShi p
Durati on

Dur ati onl nt erval
Factory

GLI FDeci si onResul t
GTS

I nt eger

I ntegerlnterval

Lib

Medi cati on

Medi cati ons

MM

Mbdel

Modul e

Modul es

Observation

Obser vat i onManager
Observations

Obser vati onSequence
Qut put

Pat i ent

Physi cal Quantity
Physi cal Quantityl nterval

Pr ovi der
Rati o

Real

Real | nt erval
Reports

SD

SnonedAttri bute
SnonedAt tri but eGroup
String

Struct uredNuneri c

There are also a number of predefined variables defined. (Only available in older MO-GELLO R1)

Nane

Cl ass
observation
Observations
pati ent

Pat i ent

nodel

Mbdel

Using Collections

One of the most powerful features of GELLO is its ability to work with collections. Typically a data model
has many different collections which can be queried with the collection operators.

It is important to remember that when a collection operator is used, the attributes of the element type of

the collection become available automatically as variables inside the query. This can be seen with one of
our demonstration examples.

cont ext observations: Observations from Mdel . observations
| et sodiums = observations->sel ect (code. nane = " Sodi unt')
sodi uns. val ue

The collection observations from the supplied model has as its elements, values of class Observation.
One of the attributes of an observation is code which of class CodedValue. Inside the select query, this
attribute is made available in the same way as a variable and can be referred to directly. In this example,
we compare the value of each element's attribute code and if its name matches the string "Sodium", that
element is selected and placed into the new collection. The same principle applies to several collection
operators.

Some of the frequently used ones are...

Select Operator

You can create a subset of a collection by using the select operator

collection -> select(boolean-expression)

This will create a new collection of the same type as collection, but only containing elements of the

original collection which match the boolean expression or condition. In our example, the following is the
collection operation select.

observations- >sel ect (code. nane = " Sodi unt')

Collect Operator

You can create a new collection based on elements of the collection by using the collect operator.
collection -> collect(sub-expression)

This will create a new collection based on the original collection, but each new element will only be the
value as determined by sub-expression. A short hand for a collect operation when sub-expression is a
single attribute of the element type of the expression is

collection.sub-expression

In our example, the following expressions are identical

sodi uns- >col | ect (val ue)
sodi uns. val ue

Using Physical Quantities

GELLO systems will use Health data types (Such as 1ISO21090 data types) in the Virtual Medical Record
and generally the data types will include a special type of value called Physical Quantity (sometimes
using the short name PQ). These are similar to the numeric Real type in that one can perform arithmetic
on them (+, -, *, / and so forth), however they have the added property that each Physical Quantity has a
units attached to it. This units property is fully managed by the GELLO framework when performing
arithmetic on Physical Quantities. Many predefined units are included as standard, including most S|
units. In the vVEMR data model supplied by the Medical-Objects framework, Physical Quantities are used
wherever possible in observations, medications and so forth.

It is important to remember the following rules when calculating with physical quantities. Units are
compatible if their unit exponents are the same. For example, units of length (metres, feet, inches etc)
are all compatible. As long as there is a conversion from one unit to another, units are also compatible.
All units are formed from base Sl units (e.g. metres, seconds, kilograms, etc)

If A and B are physical quantities:

Addition and Subtraction

Units of A and B must be compatible. If the units of A and B not identical, a units conversion operation
will be made before the calculation. If they are not compatible, a GELLO exception (run time error) will be
produced.

A + B Result.value = A value + B.convert(A unit).value, Result.unit = A
uni t
A - B Result.value = A value - B.convert(A unit).value, Result.unit = A
uni t

Multiplication

The unit indices of B are added to those of A. For example if A is in metres (m) and B is in square metres
(m”2) then the result will be in cubic metres(m”3). If there are any conversion factors from the base units
they will be multiplied together. The units do not need to be compatible - however this means that the
result of the multiplication will need to be meaningful to what you are planning to do. If the units of A and
B are not compatible, a derived unit will be formed with the combination of both units.

A * B Result.value = A value * B.val ue,
Resul t. unit.exponent = A unit.exponent + B.unit.exponent,
Result.unit.scale = A unit.scale * B.unit.scale

Division
The unit indices of B are subtracted from those of A. For example if A is in cubic metres (m"3) and B is in

metres (m) then the result will be in square metres(m”2). If there are any conversion factors from the
base units they will be conversion(A) / conversion(B).

A/ B Result.value = A value / B.value,

Resul t. unit.exponent = A unit.exponent - B.unit.exponent,
Result.unit.scale = A unit.scale / B.unit.scale

Example of PQ use

An example of using physical quantities would be Body Mass Index. BMI = W / H*2

Let weight: Physical Quantity = factory. physical quantity(55,"'kg")
Let height: Physical Quantity = factory. physical quantity(1.02,'ni)
Let BM: Physical Quantity = weight / (height * height)

"BM =" + bm.value.format(1,3) + ', units '+bm .unit

The results are...

VEEI GHT: Physi cal Quantity = 55 kg

HEI GHT: Physical Quantity = 1.02 m

BM : Physical Quantity = 52.8642829680892 kgnt-2
Result is BM =52.864, units kgmt-2

Appendices

GELLO R2 EBNF

The following notational conventions are used throughout GELLO BNF syntax:

The root symbol of the syntax is GELLOExpression

Non-terminal symbols are denoted by plain identifiers, e.g. expression

Left-hand side terms in production rules are nonterminal

Tokens are represented with text strings enclosed in angle brackets, e.g. <atom>.
Reserved words are represented by text strings enclosed in double quotes.

The grammar below uses the following conventions:

(x)? denotes zero or one occurrences of x.

(x)* denotes zero or more occurrences of x.

(x)+ denotes one or more occurrences of x.

X | y means one of either x or y.

CGELLCExpr ession: : = Qut er Expressi on

Qut er Expression:: = Declarative+ (ExpressionNP? | <IN> Expression) |
Expr essi on

Decl arative::= Let Statenent

| Cont ext Navi gati onSt at enent

I nner Expression:: = Let Statenment+ (Expressi onNP | <I N> Expression) |
Expr essi on

Let Statenment::= <LET> <ID> ":" DataTypes <EQUAL> Expressi on

| f Statement:: = <I F> Expression <THEN> | nner Expressi on <ELSE>

I nner Expr essi on <ENDI F>

Cont ext Navi gati onSt at enent: : = Cont ext St at enent

| PackageSt at enent

Cont ext St at ement : : = <CONTEXT> Cont ext Cl ass Cont ext Bl ock?

| <CONTEXT> Alias ":" ContextC ass ContextBl ock?

Context Ol ass:: = Cl assNane | Col |l ectionType "(" Contextdass ")"

Cont ext Bl ock: : = Defi niti onBody+

DefinitionBody::= <DEF> ":" <ID> ":" DataTypes <EQUAL> | nner Expression
| <DEF> ":" <ID> "(" Fornul Params? ")" ":" DataTypes <EQUAL>

I nner Expr essi on

Formal Parans::= <ID> ":" DataTypes ("," Formal Parans)?

Alias::= <ID>

PackageSt at enent : : = <PACKAGE> PackageNane

Cont ext St at ement +

<ENDPACKAGE>

PackageNare: : = Name

Literal ::= <STRI NG LI TERAL>

| <INTEGER LI TERAL>
| <REAL_LI TERAL>
| <TRUE>

| <FALSE>

| <UNKNOWR>

| <NULL>

| CollectionLiteral

| TupleLiteral

| "#" <ID>

Col l ectionLiteral::= CollectionType? "{" (CollectionLiteral Elenment (","
Col l ectionLiteral Elenent)*)? "}"

Col l ectionLiteral El ement::= Expression (".." Expression)?

TupleLiteral ::= <TUPLE> "{" TupleLiteral Elenent ("," TuplelLiteral El enent)
* "}"

TupleLiteral El ement::= <ID> (":" DataTypes)? <EQUAL> Expression
Dat aTypes: : = GELLOType

| Model Types

GELLOType: : = Basi cType

| CollectionType ("(" DataTypes ")")?
| Tupl eType

| EnunerationType

Basi cType: : = <I NTEGER>

| <STRI NG

| <REAL>

| <BOOLEAN>

Mbdel Types: : = C assNane

Col | ecti onType: : = <SET>

| <BAG

| <SEQUENCE>

Tupl eType: : = <TUPLE> " (" Tupl eTypeEl ement ("," Tupl eTypeEl ement)* ")"
Tupl eTypeEl ement::= <ID> ":" DataTypes

Enuner ati onType: : = <ENUM> " (" <ID> ("," <ID>)* ")"

Cl assName: : = NaneW t hPat h

NameW t hPath: : = Name ("::" Name)*

Name::= <ID> ("." <ID>)*

Expression::= Condi tional Expression

Condi ti onal Expression::= O Expression

O Expression:: = Conditional AndExpressi on (<OR> Condi ti onal AndExpression |
<XOR> Condi ti onal AndExpr essi on)*

Condi ti onal AndExpr essi on:: = Conpari sonExpressi on (<AND>

Conpar i sonExpr essi on) *

Conpar i sonExpressi on: : = AddExpr essi on (<EQUAL> AddExpressi on
<NEQ> AddExpression | <LT> AddExpression |

<LEQ> AddExpression | <GTI> AddExpression |

<GEQ> AddExpressi on) *

AddExpression::= Miltipl yExpression (<M NUS> Mil tipl yExpression |
<PLUS> Mul ti pl yExpression)*

Ml ti pl yExpressi on:: = UnaryExpression (<TI MES> Unar yExpression |
<Dl VI DE> Unar yExpression | <MAX> Unar yExpression |

<M N> UnaryExpression | <INTDI V> UnaryExpression |

<MOD> Unar yExpression)*

Unar yExpr ession: : = Pri maryExpressi on

| <NOT> Unar yExpressi on

| <M NUS> Unar yExpr essi on

| <PLUS> Unar yExpression

| PrimaryExpression

Pri maryExpression::= Literal
| Operand

| ReferenceTol nstance

| IfStatenent

| "(" Expression ")"

Expr essi onNP: : = Condi ti onal Expr essi onNP

Condi ti onal Expressi onNP: : = O Expr essi onNP

O Expressi onNP: : = Condi ti onal AndExpr essi onNP (<OR>

Condi ti onal AndExpr essi on |

<XOR> Condi ti onal AndExpr essi on) *

Condi ti onal AndExpr essi onNP: : = Conpar i sonExpr essi onNP (<AND>

Conpar i sonExpr essi on) *

Conpar i sonExpr essi onNP: : = AddExpr essi onNP (<EQUAL> AddExpr essi on
<NEQ> AddExpression | <LT> AddExpression |

<LEQ> AddExpression | <GI> AddExpression |

<GEQ> AddExpressi on) *

AddExpressi onNP: : = Mul ti pl yExpressi onNP(<M NUS> Mul ti pl yExpression |
<PLUS> Mul ti pl yExpression)*

Ml ti pl yExpressi onNP: : = Unar yExpr essi onNP (<TI MES> Unar yExpr essi on |
<Dl VI DE> Unar yExpressi on | <MAX> Unar yExpression |

<M N> UnaryExpression | <INTDI V> UnaryExpression |

<MOD> Unar yExpression)*

Unar yExpr essi onNP: : = Pri mar yExpr essi onNP
| <NOT> Unar yExpression

Pri mar yExpressi onNP: : = Literal

| Operand

| ReferenceTol nstance

| 1fStatenent

Operand: : = <I D>
Operand "." <ID>
Operand "." StringQOperation
Qperand "." Tupl eOperation
Qperand "." StringO Tupl eSi ze

Operand "[" ExpressionList "]"
Operand <ARROMN¢ Col | ect i onBody
Col | ectionLiteral <ARRON> Col | ecti onBody
<SELF>
Col | ecti onBody: : = NonPar anExp
| Sel ectionExp
| QuantifierExp
| Si ngl etbj Exp
| ListObj Exp
| CGet Exp
[
|
[

|
|
|
|
| Operand "(" ParaneterList ")"
|
|
|
|

Set Exp
I terateExp
Joi nExp
Sel ecti onExp: : = <SELECT> " (" CExp ")"
| <REJECT> "(" CExp ")"
| <COLLECT> "(" CkExp ")"
QuantifierExp::= <FORALL> "(" Ckxp ")"
| <EXISTS> "(" CExp ")"
CExp: : = Condi ti onal Expressi on
| Conditional Expressi onWthlterator
| Condi tional Expressi onWthlteratorType
Condi ti onal ExpressionWthlterator::= <ID> "|" Conditional Expressi on
Condi ti onal ExpressionWthlteratorType::= <ID> ":" DataTypes "|"
Condi ti onal Expr essi on
NonPar anExp: : = <SI ZE> "(" ")"
<l SEMPTY> " (" ")"
<NOTEMPTY> " (" ")"

<SUMB " (")"
<REVERSE> " (" ")"
<SMN> (")
MG (")
<FLATTEN> "(")"
<AVERAGE> "(")"

<MEAN> " (")"
<MEDI AN> (")"

<MODE> " (" ")"

<STDEV> " (" ")"

<VARI ANCE> " (" ")"

<DI STINCT> " (" ")"

i ngl eCbj Exp: : = <COUNT> " (" Object ")"

<I NCLUDES> " (" Object ")"

<I NCLUDI NG> " (" Onject ")"

<EXCLUDI NG> " (" Onoject ")"

i st Obj Exp:: = <I NCLUDESALL> "(" ObjectList ")"

—_r— g - - — —— — — —

<SORTBY> " (" PropertyList ")"

Get Exp:: = <FI RSTN> "(" Expression ")"

| <LASTN> "(" Expression ")"

| <ELENMAT> "(" Expression ")"

| <LIKE> "(" Expression ")"

| <NOTLI KE> "(" Expression ")"

| <BETWEEN> "(" Expression "," Expression ")"

Set Exp: : = <I NTERSECTI ON> " (" Expression ")"

| <UNION> " (" Expression ")"

IterateExp::= <I TERATE> "(" IterateParameterList ")"
Joi nExp::= <JO N> "(" ParaneterlList ";" ParaneterList ";"
Condi ti onal Expression ";" ParaneterList ")"
StringQperation::= StrConcat

| StrToUpper

| StrToLower

| Substring

StringOr Tupl eSi ze:: = <SIZE> "(" ")"

StrConcat :: = <CONCAT> " (" Expression ")"

StrToUpper:: = <TOUPPER> " (" ")"

StrToLower::= <TOLONER> "(" ")"

Substring::= <SUBSTRING> " (" Expression "," Expression ")"
Tupl eOper ati on: : = Tupl eGet Val ue

| Tupl eGet El enNane

| Tupl eCGet El enTType

Tupl eGet Val ue: : = <GETVALUE> " (" Tupl eEl enNane ")"

Tupl eGet El enNane: : = <GETELEMNAME> " (" Expression ")"

Tupl eGet El enfType: : = <GETELEMIYPE> " (" Expression ")"
IterateParaneterList::= <ID> (":" DataTypes)? ";" <ID> ":" DataTypes
<EQUAL> Expression "|" Expression

Par amet er Li st :: = ExpressionList?

ExpressionList::= Expression ("," Expression)*

Obj ectList::= oject ("," oject)*

Obj ect:: = Expression

PropertyList::= Property ("," Property)*

Property:: = Nanme

Tupl eEl emNane: : = Nane

Ref er enceTol nst ance: : = <FACTORY>. Cl assNane(Par anet er Li st)

<#DECI MAL_LI TERAL: (["0"-"9"])+ >

<HEXPONENT: ["e", "E'] (["+","-"1)? (["0"-"9"])+>
<I NTEGER LI TERAL: <DECI MAL_LI TERAL>>

<REAL_LI TERAL: <DECI MAL_LI TERAL> “.* (["0"-"9"])* (<EXPONENT>)? | “." (["0"
-"9"])+ (<EXPONENT>)? >

<STRING LI TERAL: (*\"' (~["\"™' , "\n", "\r"])* "\"" | "\'" (<["\'"
N, At T) >

<D ["ar-"z", "AT-"Z'] (["a'-"z","AT-"Z',M0"-"9] |t t([Mar-tzt At

0"-"9"]))* >
<BAG "Bag">

<BOOLEAN: "Bool ean">
<ENUM " Enuni >
<INTEGER "I nteger">
<NULL: "null">

<REAL: "Real ">
<SEQUENCE: " Sequence">
<SET: "Set">

<STRING "String">
<SELF: "Sel f">
<TUPLE: "Tuple" >

<UNKNOWN: "unknown" | "Unknown" >
<AND: "&" | "and" >

<ARROW "->" | "?" >

<AVERAGE: "average" >

<BETWEEN: "between" >

<COLLECT: "collect" >

<CONCAT: "concat" >

<COUNT: "count" >

<DEF: "Def" | "def" >

<DI STINCT: "distinct" >
<DIVIDE: "/" >

<ELEVAT: "elemat" >
<EXCLUDI NG "excl udi ng" >
<EXI STS: "exists" >

<FACTCRY: "factory">

<FALSE: "false" | "False" >
<FIRSTN. "firstN' >

<FLATTEN. "flatten" >
<FORALL: "forAll" >

<EQUAL: "=" >

<CEQ ">=" >

<GETELEMNAME: "get El enNanme" >
<GETELEMIYPE: "get El enType" >
<GETVALUE: "getVal ue" >

<@GI: ">" >

<I NCLUDES: "i ncl udes" >

<| NCLUDESALL: "includesAll" >

<I NCLUDI NG "i ncl udi ng" >
<INTDIV: "div" >

<I NTERSECTI ON: "intersection" >
<| SEMPTY: "isEnmpty" >

<I TERATE: "iterate" >
<JON "join" >

<LASTN. "lastN' >

<LEQ "<=" >

<LIKE: "like" >

<LT: "<" >

<MAX: "max" >

<MEAN: "nmean" >

<MEDI AN: "nedi an" >

<M N "mn" >

<M NUS: "-" >

<MOD: "nod" >

<MODE: "node" >

<SNEQ "1=" | "<t >
<NEW "new' >
<NOT: "!" | "not" >

<NOTEMPTY: "not Enpty" >
<NOTLI KE: "notlike" >
<OR "|" | Jor" >
<PLUS: "+" >

<REJECT: "reject" >
<REVERSE: "reverse" >
<SELECT: "select" >

<S| ZE: "size" >
<SORTBY: "sortBy" >
<SDEV: "stdev" >
<SUBSTRI NG "substring" >
<SUM "suni >

<TIMES: "*" >

<TOLOVNER "toLower" >
<TOUPPER: "toUpper">
<TRUE: "true">

<UNION: "uni on" >

<VARI ANCE: "vari ance" >

<XOR "*|" | "xor" >

<CONTEXT: "context" | "Context">

<ELSE: "el se" >

<ENDPACKAGE: "EndPackage" | "endPackage" | "endpackage" >
<ENDI F: "endif" >

<IF: "If" | "if" >

<IN "in" >

<LET: "Let" | "let" >

<PACKACE: "Package" | "package">

<THEN: "then" >

Val ues and Types[edit]All expressions in GELLO have a Value and a Type.
The Value is the actual representation of the Type. Types can be either
Sinpl e Types, Collection Types, Tuple Types or Mddel Types

Sinpl e Types[edit] Sinple types represent the npost fundanental pieces of
data that a GELLO program can work with.

GELLO has several sinple data types available. Integer, Real, String and
Bool ean

I nteger Type[edit] The Integer type represents val ues which are whole
nunbers. They can be positive or negative nunbers and al so include the

val ue zero. MO-CELLO R2 Integer values are stored as Extended precision
real nunbers (80 bits) with an exponent of Zero. This neans they have at
nost 64 bits of precision (from-9, 223,372,036, 854, 775,807 up to +9,
223,372, 036, 854, 775, 807)

Real Type[edit] The Real type represents val ues which are nunbers which are
not necessarily integers. Integers are a subset of Real nunbers. MO GELLO
Real values are stored as Doubl e precision real nunbers (64 bits).

String Type[edit] The String type represents val ues which are sequences of
characters. Strings in MO GELLO can have any length within the constraints
of the available nenory in the executing environnent, and the characters

are taken fromthe extended ASCI| character set.

Bool ean Type[edit] The Bool ean type is used to represent GELLO truth
val ues. Values of this type can only be true, false or unknown.

Enuner ati on Types[edit] Enunerati on types are a specialization of the
String type, however they are only permtted to have values that match the
enuneration type. Any string value is pernmitted as an enuneration val ue.
For exanple a variable with enuneration type Col our coul d be defined as
foll ows.

Let col our: Enun{"red", "blue", "yellow', "green", "violet") = "blue"At
the nonent, the GELLO specification is inconplete with regard to using
enuneration types, however if the underlying data nodel uses enuneration
types, these may be inported by the GELLO program
Col l ection Types[edit]A collection is a list of data values, each with the
sane data type. The data values can be either of a sinple type like
integer or string, or can be conplex data types |like collections, tuples
or classes. The conponents or itens of a collection are fornerly known as
collection el ements.

There are three kinds of collections, Sets, Bags and Sequences.
A Set is alist of itenms which are all distinct (i.e. there can be no
identical itens). They may be in any order, however the ordering is

uni nportant when conparing two sets.

A Bag is simlar to a Set with the exception that nore than one item of
the sane value is allowed, and ordering is uninportant when conparing two
bags.

A Sequence is nuch the sane as a bag, except that the order of the itens
is inportant.

Here are exanpl es of Sets.

Set{ 1, 2, 3, 4, 5} -- a set of the first 5 integers. Set{
"apple", "orange", "pear" } -- a set of strings with values correspondi ng
to the names of fruit
Here are exanpl es of Bags.

Bag{ 1, 2, 2, 3, 4, 4, 4, 5} -- alist of integer

val ues -- (with duplicates)Bag{ 1, 2, 3,
2, 4, 5, 4, 4} -- sane as above even though the ordering is

di fferentBag{ "apple", "orange", "pear", "apple" } -- a list of strings

with values corresponding to the nanmes of fruit
Here are exanpl es of Sequences.

Sequence{ 1, 2, 2, 3, 4, 4, 4, 5} -- alist of integer values (with
duplicates)Sequence{ 1, 2, 3, 2, 4, 5, 4, 4} -- different to above
since the ordering is inportantSequence{ "apple", "orange", "pear",
"apple" } -- a list of strings with values corresponding to the names of
fruit

Tupl e Types[edit] Tuple types are simlar to Collections in that they
represent a group of related data itenms. However, unlike collections where
the collection elenents nust be all of the sanme type, in tuples they may
be of different types. Each elenent of a tuple is accessed by its nane,
and has its own distinct elenent type.

Here is an exanple of a let statement with a tuple representing the
contact details and of a patient. The tuple definition starts with "tuple
(" and ends with ")". Tuple types may be nested within other conplex
types, and other types can be nested within a tuple type.

Let patient_contact: Tupl e(surname: string, gi vennane:
string, street nunber: integer, st reet nane:
string, city: string, zi pcode:
i nteger country: string)
= Tupl e{ surnane = "Smth", gi vennane =
"Fred", street nunber = 123, street nane = "Lowdown
St", city = "MbTown", zi pcode =
998877, country = "Republic of MTownoni a"} The syntax of
tuple type definitions is
Tupl eType ::= <Tuple> "(" Tupl eTypeList ")"
Tupl eTypeLi st ::= Tupl eTypeLi st "," Tupl eTypeEl enent Tupl eTypeList ::=
Tupl eTypeEl enent
Tupl eTypeEl ement ::= <ldentifier> ":" Typed ass Types[edit] Cl ass types are

simlar to tuple types in that that have nanmed el ements which are called
Attributes. O asses also have Operations which can be perfornmed on the
class. In general, the data npdel supplied to the GELLO programw || have
a nunber of classes which represent conmponents of the data nodel.

Class Attributes[edit]Enter topic text here

Class Qperations[edit]Enter topic text here

Expressions[edit] Expressions formthe foundation of GELLO prograns and are
made up of operands and operators. Generally an expression is witten as a
list of operands separated by operators. Operators have precedence, which

neans the order in which the operators will be applied when eval uating an

expression with nore than one operator. The precedence of operators may be
overridden by the use of "(" and ")" to group sub-expressions

conceptually in grammatical form

Expressi on ::= Expression Operator OperandExpression ::= Operandand
Operand ::= Literal Operand ::= Variabl eCperand ::= UnaryOperat or
OperandOperand ::= "(" Expression ")"Qperand ::=

Condi ti onal Expr essi onOper ands[edi t] operands can be either literals,

vari abl e values, or the results of attributes, operations or queries
Literal s[edit]Literal operands are operands which have fixed litera

val ues, such as nunbers, strings, or even conplex literals |like collection
or tuple literals

Integer Literals[edit]Integer literals are values which are integer

t okens. see Nunbers

Real Literals[edit]Real literals are values which are real tokens. see
Nurber s

String Literals[edit]String literals are values which are string tokens
see Strings

Bool ean Literal s[edit] Boolean literals are val ues which are bool ean
tokens. see Bool ean Type

Collection Literals[edit]the syntax of Collection Literals is as follows

Col l ectionLiteral Exp ::= Coll ectionType "{" CollectionLiteral Parts "}"
Col l ectionLiteral Exp ::= Coll ectionType "{" "}"

Col lectionLiteral Parts ::= CollectionLiteral Parts ","

Col l ectionLiteral PartCol l ectionLiteral Parts ::= CollectionLiteral Part
Col l ectionLiteral Part ::= ExpressionCollectionLiteral Part ::=

Col | ecti onRange

Col | ectionRange ::= Expression ".." Expression

Tuple Literals[edit]the syntax of Tuple Literals is as follows

Tupl eLiteral Exp ::= <Tuple> "{" Tupl eDefList "}"

Tupl eDef Li st ::= Tupl eDefList "," Tupl eDef Tupl eDef Li st ::= Tupl eDef
Tupl eDef ::= <ldentifier> ":" Type "=" ExpressionTupleDef ::= <lIdentifier>

"=" ExpressionVariable values[edit]A variable operand is represented by a
vari abl e name, and can be nodified by any nunber of attributes or
operati ons.
for exanple, in the program

Let a: Integer = 1Let b: Integer = a + 25bthere are variables a and b
Wienever a variable is referred to, it is replaced in the expression by
its value (in this exanple a has the value 1 and b has the val ue 26

In this exanple

Let sodi ums = observations->sel ect (code. name = "Sodi uni') sodi uns. val uet here
are several variable val ues
observations code sodi unms

Class Attribute Values[edit]A class attribute value is specified by
follow ng an expression operand by a "." and an identifier representing
the attribute nane. The resulting operand can be used as operand. An
attribute nmeans the same as the property of a class in other object
oriented | anguages.

for exanple, if a variable naned obs of type Observation has the
attributes name and age, these attributes can be witten as

obs. naneand

obs. ageThe operator "." may be repeatedly applied to the operand

for exanple, one can wite

obs. nane. surnaneto represent the surname attribute of the name attribute
of the Cbservation obs

The syntax of a Cass Attribute is
Variable ::= Variable . <ldentifier>C ass Operation Val ues[edit]Cl ass
Operation values are simlar to attributes, but instead return the result
of an operation applied to a variable operand. An operation neans the sane
as a nethod of a class in other object oriented |anguages

for exanple, if there is a variable patient of class Patient, and it has
an operation

prescription_count_for_recent_years(numyears: Integer): Integerto count
the nunber of prescriptions in the last N years, one could get the nunber

of prescriptions in the last year by witing...
patient.prescription_count_for_recent_years(1l)the syntax of a Cl ass

Operation is
Variable ::= Variable . <ldentifier> "(" Parans ")"Operators[edit]
Expressi on Operators represent an operation which can be perforned on one
or two values or Qperands of an expression. An operation on a single
operand is called a Unary Operator and an operation on two operands is
called a Binary Operator. Cenerally the formis either

Unar yOper at or Oper andor

Oper andl Bi naryQOperator Operand2Arithmetic operators[edit] The follow ng
operators work on Reals and | nteger types.

+ addi tion of two operands- subtraction of two
oper ands* mul tiplication of two operands/ di vi sion of two
oper ands

- negati on of a single operandThe foll owi ng operators work on

I nteger types only

div integer division of two operandsnod i nteger nodul o

di vision (remainder after division) of two operands

Bool ean operators[edit] The foll owi ng operators work on Bool ean types. In
GELLO, the Bool ean operators al so work for unknown val ues.

and the |l ogical and of two operandsor the I ogical inclusive
or of two operandsxor the | ogical exclusive or of two

oper andsnot the |l ogical inverse of one operandHere is a table
outlining the results of each Bool ean oper ator

A B A and B A or B A xor B not

Af al se fal se fal se fal se fal se

truefal se true fal se true true

truetrue fal se fal se true true

fal setrue true true true fal se

fal sef al se unknown fal se unknown

unknown truetrue unknown unknown true

unknown f al seunknown fal se fal se

unknown unknown unknownunknown true

unknown true unknown unknownunknown

unknown unknown unknown unknown unknownd ass
operators[edit] There are several class operators avail able.

val ue. i sUndef i ned() returns true if the value is null or undefined.
val ue. i sDef i ned() returns true if the value is not null or

undef i ned.

val ue. i sTypeof (nane) returns true if the class of value is nane.

Col I ection Operators[edit] A collection operator is an operator that
operates on collection classes only. To understand how col |l ection
operators are used, see Using Collections.

It takes the form <collection> "->" <collection operator> "(" <paraneters>

my
Here is an exanple using a collection operator.
| et sodiuns = observations -> sel ect(code. nane = " Sodi unt')

This neans select fromthe collection observations only observati ons which
have the attribute code with a name of "Sodiuni.

Sonme col l ection operators nmay take one or nore conditions as paraneters,
while others nmay take a nunber, and sone no paraneters at all.

There are many predefined collection operators in GELLO Here is a list of
themwi th some exanpl es of usage.

Sel ect Operator[edit]sel ect(Bool eanExpression)sel ect(v | bool ean-
expression-w th-v)sel ect(v: Type | bool ean- expressi on-w t h-v)

observations->sel ect (code. nane = ' sodi uni)observati ons->sel ect (obs | obs.
code. val ue > 20 or obs.code.nane = ' Na')observati ons->sel ect (obs:
EncodedCbservation | obs. encoded. code. val ue > 20 or obs.code.nane = 'Na')

Rej ect Operator[edit]reject(Bool eanExpression)reject(v | bool ean-
expression-with-v)reject(v: Type | bool ean-expressi on-w th-v)

observations->reject (code. nane = 'sodi uni)observati ons->reject(obs | obs.
code. val ue > 20 or obs.code.nane = ' Na')observations->reject(obs:
EncodedChservati on | obs. encoded. code. val ue > 20 or obs.code.nane = 'Na')

Col | ect Operator[edit]collect(Expression)collect(v | expression-wth-v)
collect(v: Type | expression-wth-v)

observations->col | ect (code. nane) observati ons->col | ect (obs | obs. code. val ue)
observations->col | ect (obs: EncodedObservation | obs. encoded. code. val ue)
ForAll Operator[edit]forAll(Bool eanExpression)forAl (v | bool ean-
expression-with-v)forAll (v: Type | bool ean-expressi on-with-v)
observations->forAll (code. name = 'sodi um)observations->forA |l (obs | obs.
code. val ue > 20 or obs.code.nane = 'Na')observations->forAll (obs:

EncodedChservati on | obs. encoded. code. val ue > 20 or obs.code.nane = 'Na')

Exi sts Operator[edit]exists(Bool eanExpression)exists(v | bool ean-
expression-w th-v)exists(v: Type | bool ean-expressi on-w t h-v)

observations->exi sts(code. nane = ' sodi uni)observati ons->exi sts(obs | obs.
code. value > 20 or obs.code. name = ' Na')observations->exi sts(obs:
EncodedCbservation | obs.encoded. code. value > 20 or obs.nane = 'Na')

Iterate Operator[edit]iterate(el em Type; result: Type = expression |
expression-w t h-el emand-result)
observations->iterate(i

i nteger; r:integer = 0
| if code.nane = "Na' thenr + 1
else r endif) I ncl udesAl | Operator[edit]

includesAl |l (Col | ecti onExpressi on)

observations->col | ect (code. nane) - >i ncl udesAl | (' Na')

Sort By Operator[edit]sortBy(ExpressionList)

observations->sort By(code. nane, dat e)

FirstN Operator[edit]firstN(Integer Expression)

observations->firstN(10)

Last N Operator[edit]last N(Integer Expression)

observations- >l ast N(10)

El emAt Operator[edit]el emit (I nteger Expression)

observati ons- >el emAt (5)

Si ze Operator[edit]size()

observations->si ze()

| sEmpty Operator[edit]isEnpty()

observations->i sEnpty()

Not Enpty Operator[edit] not Enpty()

obser vat i ons->not Enpt y()

Sum Qperator[edit]sunm()

observations->col | ect (val ue) - >sun{)

Reverse Operator[edit]reverse()

observations->reverse()

Mn Qperator[edit]mn()

observations->col | ect (val ue)->m n()

Max Operator[edit] max()

observations->col | ect (val ue) - >max()

Flatten Qperator[edit]flatten()

observations->flatten()First Operator[edit]first()
observations->first()

Last Operator[edit]last()

observations->l ast ()

Average Operator[edit]average()

observations->col | ect (val ue) - >aver age()

stdev()

observations->col | ect (val ue) - >stdev()

Variance Operator[edit]variance()

observations->col | ect (val ue) - >vari ance()

count (obj ect)

observations->col | ect (code. nane) - >count (' Na')

Includes Operator[edit]includes(object)

observations->col | ect (code. nane) - >i ncl udes(' Na')

I ncl uding Operator[edit]including(el enent)

observations->col | ect (code. nane) - >i ncl udi ng(' Na')

Excl udi ng Oper ator[edit]excl udi ng(el enent)

observations->col | ect (code. nane) - >excl udi ng(' Na')

Intersection Operator[edit]intersection(set)

all _allergies->intersection(airborne_allergies)

Uni on Operator[edit]union(set)

new_al | ergi es->i ntersection(old_allergies)

Join Operator[edit]join(collections; joinedproperties; bool eanExpression;
or der byExpr essi on) Condi ti onal Expression[edit]A Conditional Expression is
an expression which is deternmined by a bool ean value. If the expression
between If and Then evaluates to true, the resulting expression is that
between the Then and El se synbols, otherwise it is the expression between
the El se and Endif synbols.. An inportant aspect of Conditional
Expressions is that the two expressions alternatives are actually
Expressi on Bl ocks whi ch neans one can have additional Let statements
inside the Conditional Expression. It is inportant to renenber that any
vari abl es defined in an expression block are only local to that bl ock.

The syntax is as follows.

Condi ti onal Expression ::= <If> Expressi on <Then> Expressi onBl ock <El se>
Expr essi onBl ock <Endi f >St atement s[edit] A GELLO program typically consists
of a nunmber of statenments one after the other. Usually a GELLO program
contains a nunber of Let statenents followed by a final Expression. It is
conpletely valid to have a final Expression w thout any Let statements.
The conbination of statements and final expression is called an Expression
Bl ock. Expression Bl ocks can al so appear inside Conditional Expressions.
There are several kinds of statenents, Let Statenents, Context Statenents
and Final Expression.

Statenments are joined together into statement lists. Since GELLOis a
decl arative | anguage, the order of statenents should not affect the end
result, however variables nmust be defined before they are used so any |et
statenments defining themw ||l need to be placed earlier in the statenent
lists before those variable are used.

The syntax of the statenent section of a GELLO programis as follows

GELLO _Program :: = ExpressionBl ock

Expressi onBl ock ::= StatenentList Final Expression
StatenentList ::= StatementList StatementStatementList ::=
Fi nal Expression ::= ExpressionFi nal Expression ::=
Statement ::= LetStatenentStatenent ::= ContextStatenment

Let Statenent[edit] The Let Statenment allows a GELLO expression to be
assigned to a variable name. It is a very useful concept in that it allows
GELLO expressions to be broken down into meaningful pieces, and al so

all ows frequently used values to be reused within the GELLO program A Let
Statenent can also be referred to as a Variabl e Decl aration.

GELLO variables differ to those in typical conputer |anguages in that they
may only be assigned a value once which neans that GELLO variables are
effectively constant for their lifetime. The reason for this is that GELLO
is derived from OCL which belongs to the famly of functional |anguages.

If you are a programer of commonly used programm ng | anguages |ike C or
Pascal, it requires sone rethinking to grasp the ways in which GELLO
expressions are witten. However, with a little practice conplex GELLO
prograns can be effectively structured through the use of GELLO vari abl es.
Sorme exanpl es of Let Statenments are...

Let a: Integer = 25

Let j = observation->sel ect((code.code="2951-2") or (code.code = "2823-3"))
Let alt_ok: Boolean = |If alt_obs.isdefined() then al t _obs. val ue <
alt_obs.reference_range.upper_linmt * 2 else unknown endi f

In GELLO-R2, the reserved word "Let" is case-sensitive. Also, in MO>GELLO
the type of the variable is optional and nay be omtted. The type of the
variable can be inferred fromthe expression which is used to create it.
If the type is specified, the assigned expression nust be conpatible with
that type.

The syntax of Let statenents is as follows.

Let Statenment ::= <Let> <ldentifier> Optional Type Expr essi on

Optional Type ::= ":" TypeOptional Type ::=Final Expression[edit] The Final
Expression nust be the last statement in a GELLO program It is the result
of executing the GELLO program In MO CGELLO, this is currently optional,
and when omtted, the GELLO programreturns the null (or undefined)
expression val ue.

In the follow ng GELLO program

Let a: Integer = 50Let b: Integer = (a*100 + 20) div 2a + bthe final
expression is the last line

a+bh

In typical use, nmost GELLO prograns will contain a Final Expression.

The syntax is

Fi nal Expression ::= ExpressionFi nal Expressi on ::=Context Statenent[edit]
The Context Statenent is mainly used when GELLO is run as an query

| anguage within an existing class context. The <C assNane> par aneter
identifies the class context of the instance data for which GELLO query is
being applied in an enbedded GELLO environnment. You can optionally assign
a identifier to the class instance. If one is not given, the default nane
"self" is assigned.

For exanple, a messaging infrastructure nmight wish to execute a GELLO
query on a nessage representing an instance fromthe data nodel. The
instance root class should be the one specified in the Context statenent
(e.g. the SinglePatient class fromthe VMR nodel). Any Let statenents or
Fi nal Expressions followi ng the Context Statement can reference all the
published attributes and operations of the underlying context class

directly.

The syntax of a Context Statenent is as follows.

Context Statenment ::= <Context> [<ldentifier>:] <O assName>The Data Model
[edit]All GELLO programwi |l have a predefined environment which is
available to it. This environnent will contain a |list of predefined

cl asses which can be used. Wen using the GELLO | nteractive Debuggi ng

Envi ronment (1 DE) you can use the Cass Explorer tab to explore the
classes available with their properties and nmethods (attributes and
operations).

Here is a list of some of the classes available....

NOTE - this only refers to the MO VMR nodel in MO GELLO (GELLO R1)

Absol ut eTi meAbsol ut eTi nel nt erval Al | ergyAl | er gi esAr chet ypesBool eanCodedVal ue
Concept Rel ati onShi pDur ati onDur ati onl nt er val Fact or yG.I FDeci si onResul t GTSI nt e
ger | nteger | nterval Li bMedi cati onMedi cati onsM_.Mvbdel Modul eMbdul esCbser vati onO
bservati onManager Cbser vat i onsCbser vat i onSequenceQut put Pat i ent Physi cal Quant i
t yPhysi cal Quantitylnterval Provi der Rati oReal Real | nt er val Report sSDSnonedAttri
but eSnomedAtt ri but eGroupStri ngStructuredNuneri cThere are al so a nunber of
predefined variables defined. (Only available in ol der MO GELLO R1)

NameCl assobser vati onObser vati onspat i ent Pati ent nodel Mbdel Usi ng Col | ecti ons
[edit] One of the nost powerful features of GELLOis its ability to work
with collections. Typically a data nodel has many different collections
whi ch can be queried with the collection operators.

It is inportant to renmenber that when a collection operator is used, the
attributes of the el ement type of the collection becone avail able
automatically as variables inside the query. This can be seen with one of
our denonstration exanples.

context observations: Cbservations from Mdel . observationslet sodiunms =
observations->sel ect (code. nane = " Sodi unt') sodi uns. val ueThe col | ecti on
observations fromthe supplied nodel has as its el enents, values of class
Observation. One of the attributes of an observation is code which of

cl ass CodedVal ue. Inside the select query, this attribute is made
available in the same way as a variable and can be referred to directly.
In this exanple, we conpare the value of each elenent's attribute code and
if its nane matches the string "Sodiunt, that elenment is selected and
placed into the new collection. The same principle applies to several

col l ection operators.

Sonme of the frequently used ones are...

Sel ect Operator[edit] You can create a subset of a collection by using the
sel ect operator

col l ection -> sel ect (bool ean- expressi on)

This will create a new collection of the sanme type as collection, but only
containing elenments of the original collection which natch the bool ean
expression or condition. In our exanple, the following is the collection
operation select.

observations->sel ect (code. nane = " Sodi uni') Col | ect Operator[edit]You can
create a new collection based on el enents of the collection by using the
col | ect operator.

collection -> coll ect(sub-expression)

This will create a new collection based on the original collection, but
each new element will only be the value as deternined by sub-expression. A
short hand for a collect operation when sub-expression is a single
attribute of the elenent type of the expression is

col | ecti on. sub-expressi on

I'n our exanple, the followi ng expressions are identical

sodi uns- >col | ect (val ue) sodi uns. val ueUsi ng Physical Quantities[edit]GELLO
systens will use Health data types (Such as |1SO21090 data types) in the
Virtual Medical Record and generally the data types will include a special
type of value called Physical Quantity (sonetimes using the short nane
PQ . These are simlar to the nunmeric Real type in that one can perform
arithnetic on them (+, -, *, / and so forth), however they have the added
property that each Physical Quantity has a units attached to it. This
units property is fully managed by the GELLO framework when perform ng
arithnetic on Physical Quantities. Many predefined units are included as
standard, including nost SI units. In the VEMR data nodel supplied by the
Medi cal - Obj ects framework, Physical Quantities are used wherever possible
in observations, nedications and so forth.

It is inportant to remenber the followi ng rules when calculating with
physical quantities. Units are conpatible if their unit exponents are the
sane. For exanple, units of length (nmetres, feet, inches etc) are all
conpatible. As long as there is a conversion fromone unit to another,
units are also conpatible. All units are forned frombase Sl units (e.g.

netres, seconds, Kkilograns, etc)

If A and B are physical quantities:

Addition and Subtraction[edit]Units of A and B nust be conpatible. If the
units of A and B not identical, a units conversion operation will be nade
before the calculation. If they are not compatible, a GELLO exception (run
tinme error) will be produced.

A+ B Resul t.value = A value + B.convert(A unit).

value, Result.unit = A unitA- B Resul t.value = A val ue -
B.convert (A unit).value, Result.unit = A unitMiltiplication[edit]The unit
indices of B are added to those of A For exanple if Ais in netres (m
and Bis in square netres (m2) then the result will be in cubic nmetres
(m3). If there are any conversion factors fromthe base units they wll
be multiplied together. The units do not need to be conpatible - however
this nmeans that the result of the multiplication will need to be

nmeani ngful to what you are planning to do. If the units of A and B are not
conpatible, a derived unit will be formed with the conbination of both
units.

A* B Resul t.value = A value * B.val ue,

Resul t. unit.exponent = A unit.exponent + B.unit.exponent,
Result.unit.scale = A unit.scale * B.unit.scal eDivision[edit]The unit
indices of B are subtracted fromthose of A For exanple if Ais in cubic
metres (mM3) and Bis in nmetres (m then the result will be in square
metres(m'2). |If there are any conversion factors fromthe base units they
wi Il be conversion(A) / conversion(B).

A/l B Resul t.value = A value / B.val ue,

Resul t. uni t. exponent = A unit.exponent - B.unit.exponent,
Result.unit.scale = A unit.scale / B.unit.scal eExanpl e of PQ use[edit]An
exanpl e of using physical quantities would be Body Mass Index. BM = W/
H2

Let wei ght: Physical Quantity = factory. physical quantity(55,'kg")Let

hei ght: Physical Quantity = factory. physical quantity(1.02,'mi)Let BM:

Physi cal Quantity = weight / (height * height)"BM=" + bm . val ue.format
(1,3) + ', units '+bm .unit The results are...

VEEI GHT: Physi cal Quantity = 55 kgHElI GHT: Physical Quantity = 1.02 nBM:

Physi cal Quantity = 52.8642829680892 kgnf‘-2Result is BM =52.864, units kgnf-
2Appendi ces[edi t] GELLO R2 EBNF[edi t] The fol | owi ng notational conventions
are used throughout GELLO BNF syntax:

The root synmbol of the syntax is GELLOExpressionNon-terminal synmbols are
denoted by plain identifiers, e.g. expressionLeft-hand side terms in
production rules are nonterm nal Tokens are represented with text strings
encl osed in angle brackets, e.g. <atonr. Reserved words are represented by
text strings enclosed in double quotes. The grammar bel ow uses the

followi ng conventions: (x)? denotes zero or one occurrences of x.(x)*
denotes zero or nore occurrences of x.(x)+ denotes one or npre occurrences
of x.x | y nmeans one of either x or y.

GELLCExpression:: = Qut er Expr essi on

Qut er Expression: : = Decl arative+ (ExpressionNP? | <IN> Expression) |
Expr essi on

Decl arative::

= Let St at enent | Cont ext Navi gati o
nSt at emrent

I nner Expression:: = Let St at ement + (Expressi onNP | <I N> Expression) |
Expr essi on

Let Statenent:: = <LET> <ID> ":" DataTypes <EQUAL> Expression
IfStatement:: = <| F> Expressi on <THEN> | nner Expressi on <ELSE>

I nner Expr essi on <ENDI F>
Cont ext Navi gat i onSt at ement : :

= Cont ext St at enent | PackageSt at enent
Cont ext St atenment : : = <CONTEXT> Contextd ass

Cont ext Bl ock? | <CONTEXT> Alias ":"
Cont ext G ass Cont ext Bl ock?

Contextd ass:: = ClassNane | CollectionType "(" ContextClass ")"
Cont ext Bl ock: : = Defi ni ti onBody+

Definiti onBody:: = <DEF> ":" <ID> ":" DataTypes <EQUAL>

I nner Expr essi on | <DEF> ":" <ID> "("
Formal Parans? ")" ":" DataTypes <EQUAL> | nner Expression

Formal Parans::= <ID> ":" DataTypes ("," Formal Parans)?

Alias::= <| D>

PackageSt atenent: : = <PACKACE>

PackageNarme Cont ext St at ement +

<ENDPACKAGE>

PackageNane: : = Nane
Literal ::
= <STRI NG_LI TERAL> | <INTEGER LIT
ERAL> | <REAL_LI TERAL>
| <TRUE> | <FALSE>
| <UNKNOWK> | <NUL
L> | Col | ectionLiteral
| Tupl eLi teral | "#' <l D>
Col l ectionLiteral::= CollectionType? "{" (CollectionLiteral Elenent (","
Col l ectionLiteral Elenent)*)? "}"
Col l ectionLiteral El ement::= Expression (".." Expression)?
TupleLiteral ::= <TUPLE> "{" TupleLiteral Elenent ("," TuplelLiteral El enent)
*x } "
TuplelLiteral Elenent::= <ID> (":" DataTypes)? <EQUAL> Expression
Dat aTypes: : = GELLOType | Mbdel Types
GELLOType: :
= Basi cType | Col | ectionType ("("
Dat aTypes ")"
)? | Tupl eType
| Enuner ati onType
Basi cType: :
= <| NTEGER> <STRI NG
| <REAL> | <BOCOLEAN>
Model Types:: = Cl assNane
Col | ecti onType: :
= <SET> | <BAG>
| <SEQUENCE>
Tupl eType: : = <TUPLE> " (" Tupl eTypeEl emrent (","
Tupl eTypeEl emrent)* ")"
Tupl eTypeEl ement : : = <ID> ":" DataTypes
Enuner ati onType: : = <ENUM> " (" <ID> ("," <ID>)* ")"
Cl assNane: : = NameW t hPat h
NameW t hPat h: : = Name ("::" Nane)*
Nare: : = <ID> ("." <ID>)*
Expression:: = Condi ti onal Expressi on
Condi ti onal Expression:: = O Expr essi on
O Expression:: = Condi ti onal AndExpr essi on (<OR>
Condi ti onal AndExpression | <XOR>
Condi t i onal AndExpr essi on) *
Condi ti onal AndExpression:: = Conpar i sonExpr essi on (<AND>
Conpar i sonExpr essi on) *
Conpar i sonExpressi on: : = AddExpr essi on (<EQUAL>
AddExpr essi on | <NEQ> AddExpression |
<LT> AddExpression | <LEQ>
AddExpr essi on |
<Gr> AddExpression | <CGEQ>
AddExpr essi on) *
AddExpressi on: : = Ml ti pl yExpressi on (<M NUS> Mul ti pl yExpressi on
| <PLUS> Mul ti pl yExpressi on)*
Ml ti pl yExpression:: = Unar yExpr essi on (<TI MES> Unar yExpr essi on
| <Dl VI DE> Unar yExpression |
<MAX> UnaryExpression | <M N>
Unar yExpressi on | <INTDI V> Unar yExpressi on
| <MOD> Unar yExpression)*
Unar yExpression: : =

Pri mar yExpr essi on | <NOT>
Unar yExpr essi on | <M NUS>
Unar yExpr essi on | <PLUS>
Unar yExpr essi on | Pri mar yExpr essi on
Pri mar yExpression: :
= Literal | Oper and

| Ref er enceTol nst ance | I f St
at enent | "(" Expression ")"
Expr essi onNP: : = Condi ti onal Expr essi onNP
Condi ti onal Expressi onNP: : = Or Expr essi onNP
O Expressi onNP: : = Condi ti onal AndExpr essi onNP (<OR>
Condi ti onal AndExpression | <XOR>
Condi ti onal AndExpr essi on) *
Condi ti onal AndExpr essi onNP: : = Conpar i sonExpr essi onNP (<AND>

Conpar i sonExpr essi on) *
Conpar i sonExpr essi onNP: : = AddExpr essi onNP (<EQUAL>

AddExpression |
<LT> AddExpression |
AddExpression |
<GT> AddExpression |
AddExpr essi on) *

AddExpr essi onNP: : = Mul ti pl yExpressi

<NEQ> AddExpression
<LEQ>

<CGEQ>

onNP(<M NUS> Ml ti pl yExpr essi on

| <PLUS> Mul tipl yExpression)*

Mul ti pl yExpressi onNP: : =

Unar yExpr essi onNP (<TI MES> Unar yExpr essi on

| <Dl VI DE> Unar yExpression |

<MAX> Unar yExpression |
Unar yExpr essi on |

<M N>

<I NTDI V> Unar yExpr essi on

| <MOD> Unar yExpression)*

Unar yExpr essi onNP: :

Pri mar yExpr essi onNP
Unar yExpr essi on

Pri mar yExpr essi onNP: :

= Literal
| Ref er enceTol nst ance
at ermrent
Operand: : = <| D>
"t <ID>

StringQperation
Tupl eOper ati on
StringOr Tupl eSi ze
ParaneterList ")"
ExpressionList "]"
Col | ecti onBody

Col | ect i onBody

Col | ecti onBody: :
NonPar amExp

| Quanti fier Exp

Si ngl eObj Exp
| Get Exp

| I terateExp
nExp
Sel ecti onExp: : = <SELECT> " (" CExp
") |
") |
QuantifierExp::= <FORALL> " (" CExp
") |
CExp: :

Condi ti onal Expr essi on
xpressionWthlterator
ionWthlteratorType

Condi ti onal ExpressionWthlterator::=
Condi ti onal Expressi onWthlteratorType::
Condi ti onal Expr essi on

NonPar amExp: : = <Slze> " ("

my

my

)
"y
"y

)
"y
"y

)
"y
)

)

)

)
") |
Si ngl eQbj Exp: : = <COUNT> " ("
") |
") I
") |
Li st Cbj Exp: : = <I NCLUDESALL> " ("
wy |
Get Exp: : = <FI RSTN> " (" Expression
") |
") I

j

| <NOT>
| Oper and
| I St
| Operand
| Operand "."
| Operand "."
| Operand "."
| Operand "("
| Operand "["
| Operand <ARROW
| CollectionLiteral <ARROW
| <SELF>
| Sel ecti onExp
| Li st Obj Exp
| Set Exp
| Joi
<REJECT> " (" CExp

<COLLECT> "(" CExp ")"

<EXISTS> "(" CExp ")"
| Condi tional E
| Condi ti onal Express

<ID> "|" Conditional Expression
<ID> ":" DataTypes "|"

<| SEMPTY> " ("
<NOTEMPTY> " ("
<SUM> " ("
<REVERSE> " ("
<M N> " ("
<MVAX> ("
<FLATTEN> " ("
<AVERACE> " ("
<MEAN> " ("
<MEDI AN> " ("
<MODE> " ("
<STDEV> " ("
<VARI ANCE> " ("
<Dl STI NCT> " ("
bj ect

<| NCLUDES> " ("
<I NCLUDI N& " ("

"y

oj ect
Obj ect

<EXCLUDI NG> " (" Object ")"
ect Li st

<SORTBY> " (" PropertyList ")"
<LASTN> " (" Expression
<ELEMAT> " (" Expression

"y | <LI KE> " (" Expression

") | <NOTLI KE> " (" Expression

") | <BETVEEN> " (" Expression ","
Expression ")"

Set Exp: : = <I NTERSECTI ON> " (" Expression

"y | <UNI ON> " (" Expression ")"
IterateExp:: = <| TERATE> " (" IterateParaneterList ")"

Joi nExp: : = <JO N> "(" ParaneterlList ";" ParaneterlList

" Condi ti onal Expression ";
ParanmeterList ")"
StringQOperation::

= St r Concat | St r ToUpper
| Str ToLower | Substri
ng
StringO Tupl eSi ze: : = <SIze> "(" ")"
StrConcat:: = <CONCAT> " (" Expression ")"
St r ToUpper:: = <TOUPPER> " (" ")"
StrToLower:: = <TOLONER> " (" ")"
Substring:: = <SUBSTRING> " (" Expression "," Expression ")"
Tupl eOperation: :
= Tupl eGet Val ue | Tupl eGet El emNane
| Tupl eCet El eniType
Tupl eGet Val ue: : = <CETVALUE> " (" Tupl eEl enNane ")"
Tupl eGet El enNane: : = <GETELEMNAME> " (" Expression ")"
Tupl eGet El enfType: : = <GETELEMTYPE> " (" Expression ")"
IterateParaneterList::= <ID> (":" DataTypes)? ";" <ID> ":"
Dat aTypes <EQUAL> Expression "|"
Expr essi on
ParaneterList::= Expr essi onLi st ?
ExpressionList::= Expression ("," Expression)*
Obj ectList::= oject ("," oject)*
Obj ect:: = Expr essi on
PropertyList::= Property ("," Property)*
Property:: = Narme
Tupl eEl emNane: : = Nane
Ref erenceTol nst ance: : = <FACTORY>. Cl assNane(Par anet er Li st)

<#DECI MAL_LI TERAL: (["0"-"9"])+ >

<#EXPONENT: ["e", "E'] (["+","-"1)? (["0"-"9"])+>
<I NTEGER LI TERAL: <DECI MAL_LI TERAL>>

<REAL_LI TERAL: <DECI MAL_LITERAL> "." (["0"-"9"])* (<EXPONENT>)? | "." (["0O"
-"9"])+ (<EXPONENT>)? >

<STRING LITERAL: ("\"' (~["\"' , "\n", "\r"])* "\"" | "\'" (~["\'" ,
At At vty >

<ID ["a"-"z","A"-"Z"] (["a"-"z","A"'-"Z","0"-"9"] | "_"(["a"-"z","A'-"Z","

0"-"9"]))* >
<BAG "Bag">

<BOCLEAN: "Bool ean">
<ENUM " Enunt' >

<I NTEGER "I nteger">
<NULL: "null">

<REAL: "Real ">
<SEQUENCE: " Sequence">
<SET: "Set">

<STRING "String">
<SELF: "Self">

<TUPLE: "Tuple" >

<UNKNOWN: "unknown" | "Unknown" >
<AND: "&" | "and" >
<ARROW "->" | "?" >

<AVERAGE: "average" >
<BETVEEN: "between" >
<COLLECT: "collect"
<CONCAT: "concat" >
<COUNT: "count" >
<DEF: "Def" | "def" >

<DI STINCT: "distinct" >
<DIVIDE "/" >

<ELEVAT: "elemat" >
<EXCLUDI NG "excl udi ng" >
<EXI STS: "exists" >

\%

<FACTCRY: "factory">

<FALSE: "false" | "False" >
<FIRSTN: "firstN' >

<FLATTEN:. "flatten" >
<FORALL: "forAll" >

<EQUAL: "=" >

<CEQ ">=" >

<GETELEMNAME: "get El enNanme" >
<GETELEMTYPE: "get El enilype" >
<GETVALUE: "get Val ue" >

<GT: ">" >

<I NCLUDES: "i ncl udes" >

<I NCLUDESALL: "includesAll" >
<I NCLUDI NG "i ncl udi ng" >
<INTDIV: "div" >

<I NTERSECTI ON: "i ntersection" >
<| SEMPTY: "isEnpty" >

<I TERATE: "iterate" >

<JON "join" >

<LASTN. "lastN' >

<LEQ "<=" >

<LIKE: "like" >

<LT: "<" >

<MAX: "max" >

<MEAN: "nean" >

<MEDI AN: " nedi an" >

<M N "min" >

<M NUS: "-" >

<MOD: "nod" >

<MODE: "node" >

NEQ "1=" | "<t >
<NEW "new' >
<NOT: "!" | "not" >

<NOTEMPTY: "not Enpty" >
<NOTLI KE: "notlike" >
<OR "|" | Jor" >
<PLUS: "+" >

<REJECT: "reject" >
<REVERSE: "reverse" >
<SELECT: "select" >

<S| ZE: "size" >
<SORTBY: "sortBy" >
<SDEV: "stdev" >
<SUBSTRI NG "substring" >
<SUM "sunt >

<TI MES: "*" >

<TOLOVNER "toLower" >
<TOUPPER: "t oUpper">
<TRUE: "true">

<UNION: "uni on" >

<VARI ANCE: "vari ance" >

<XOR "*|" | "xor" >

<CONTEXT: "context" | "Context">

<ELSE: "el se" >

<ENDPACKAGE: "EndPackage" | "endPackage" | "endpackage"
<ENDIF: "endif" >

<IF: "1f" | "if" >

<IN "in" >

<LET: "Let" | "let" >

<PACKACE: "Package" | "package">

<THEN: "then" >

>

	GELLO R2 User Manual

