May 4, 2004 1 GLIF3.5

i

: '*:. '
Intertded™

Guideline Interchange Format 3.5
Technical Specification

May 4™, 2004

InterMed Collaboratory

Document Editors:

Mor Peleg, Aziz Boxwala, Samson Tu, Dongwen Wang, Omolola Ogunyemi, Qing Zeng

Significant contributions to the model and the document were made by (in alphabetical
order):

Nachman Ash, Elmer Bernstam, Robert A. Greenes, Ronilda Lacson, Peter Mork,
Edward H. Shortliffe

May 4, 2004 2 GLIF3.5

GUIDELINE INTERCHANGE FORMAT 3.5 TECHNICAL SPECIFICATIONcoocieieiee e 1
1. INTRODUGCTION. ...ttt e e e et e s s e e e et e e e sebaeeessabeeesasbaeeesabaeseesabesesabeeseaaseesesssbenesasseeseases 5
1.1 PURPOSE OF DOCUMENTiiiitttttiteee et titbbtbee et e e st esbbbbaessesssesasbbaassasssssab b bbb e s asessssb b b baeesee s s sbbbbaaesesssesbbbebseeessases 5
1.2 MVHAT 1S G LI et e e e et bbb e e e e e e s s e b bbb e e e s e e s sa bbb baeesesssabbbbaeeseessabrrres 5
2. (@AY 2 AV | AV @ € I TR 5
2.1 0T =] =0 = € I | 5
2.2 BIRD S EYE VIEW OF GLIF .. oottt ettt s et e e et e e s e e e s et e e e s anbae e e sabaeeeserbeeeaas 6
2.3 LAYERS OF ABSTRACTION L.utttiiieiiiiiittttitieeessieisssstessesssasssssesssesssasisssesssesssssssssesssesssssasssesssssesssosssssssssesssasssnes 7
2.4 UNDERSTANDING GLIF3’S MEDICAL ONTOLOGY ..vvviiiieiiiiitriiiieeessiitietteeeesssesseseeesesssssssssesssesssssssssssssessssins 8
S R O] =1 = € I | SRR 9
2.4.2 REFERENCE INFORMATION MODEL (RIM) ..ottt 16
2.4.3 THE MEDICAL KNOWLEDGE LAYER.....iiiitttttiiei ittt ie e s ittt e s e st sebbb e e s s e e s s e bbb b e s s s e e s s e sabbbaa e e e e e s s sabbabaeesas 21
3. CREATING A GUIDELINE ...ttt ettt ettt e s s ettt e e s et et e s st e e e s st b e s e saataeessabeeesssrbeeesanes 21
3.1 L 17N = e [N] Y Ny 1] N 22
3.2 PARAMETER PASSING ... uvvieiiittiieeeteeeeeiteeeesetteeesastesssssesessassesesassassessasessssbesesasteesssaseasesssresessstbesssassesesssrens 23
3.3 BUILDING THE FLOWCHART ..ttttttteetteitttettteeessisbbattsesesssassbssssasesssassbesesssesssasbebasssesssassbtbesssesssesstbenssasssaies 28
3.4 Yo 1 [0 TS Y 1= 1R 30
3.5 D]l 1] (0] N RS T =1 =K J OO TRT 30
3.6 2]y N o S IS ==L T OO 31
3.7 SYNCHRONIZATION STEPS.....ciiiiiutttttieietiiiitbrrteete st iaibrreeesesssaibbraetsesssa st b e et saessasbbbaseeeessssabbbbaeeesesssasbbbbaeeeas 32
3.8 FIRST LOOK AT EXPRESSIONS ..uttiiieiiiiiitttttiieeessiistsstteesesssesssssssssssssassssssssesssasssssssssessssssssssssesssssssresssesssains 32
3.9 DOCUMENTING THE GUIDELINE 1.1titiiiiitttttiteeeesiitbsseeesessseabsssesssesssassssesssesssasssssasssessssssssesssessssssssresssessssins 37
3.10 THE GLOBAL CONCEPTS ...uteiiiititieiitteeesitteeesatessesseesssestessaassessessesesasstessaassesessbesesaassesssassessssnsenesssseesesases 38
4, SPECIFYING DECISIONS ...ttt ettt e ettt s st e s s b e e e s bta s s s sabae e s st besssabeasessabenessbbeeesnes 39
41 DIFFERENT TYPES OF DECISION STEPS ..uttvitieeiiiiittetieeeessiistetesssessiasssssesssesssassssesssessssssssesssesssosssssesssesssnins 39
411 MODELING DETERMINISTIC ONE-OF DECISIONS (PREVIOUSLY KNOWN AS CASE STEPS)......covvrveerienienene 39
41.2 MODELING NON-DETERMINISTIC DECISION STEPScccctutiiiiieiiiiitiiiiieeessiiiissiessessssssasasssesssssssssssssesssassssnns 44
4121 L0 0 T A O3 o] (ol i) =1 PSSO PR RS USSN 45
41.2.2 L0110 (01 =TSRRI 45
41.2.3 VY= [T S = o T O o] o] = PUTSTN 47
4124 L0 T O T] =SSR 47
4.2 SPECIFYING DECISION CRITERIA ..tvviiieiiiiiitttteieeessseistteeesesssesbasesssesssessssbasssasssesstbesssasssssssbbesssesesssassrssseess 47
4.3 DEFINING PATIENT DATA it ttttttttieetteietttetttesessiebbataresesssabbatetasesssabbebesasesssassbebassseessasbtbesssesssesssbbesssasssaies 48
5. DESCRIBING ACTIONS ...ttt ettt et e st e e et e e e s bt e e e s ebb e e e e aabeesesbaeeessbbeeesenbessssnrenas 50

May 4, 2004 3 GLIF3.5

5.1 SPECIFYING THE ACTION AND PARAMETERSciiiiettttiiteeesieittttietsesssesssbeetsesssesstbesesasssssssbbasseesssssassrsseeess 50
5.2 ITERATIVE ACTIONS (AND DECISIONS) ...cutetetestesuiateaeesteseestestessessesseasesseessessessessesseasssssessessessessessesseessenns 50
53 AACTION SPECIFICATIONS ... tttttiiiee et s ieibtti et e e s s seib bbb e et e e s s sasab b b e st sasssesaa b b e st sesesssaabbbbaeesesssasbbbbaessesssabbbbanesasssases 53
53.1 SUBGUIDELINE ACTION 111tttitiiiiiittttttteeessiistbrseessesssassssssssessseissssssssesssassssssssssssasistsessssssssissssssssesessisssssseeses 54
5.3.2 ASSIGNMENT ACTION Luttiiiiiiiiiiititiittteetiaiittesteesssaiistbertsessssiibbssaeesesssaibbtbaessesssass bt bessseessasbbbasseeeesssasbbasaeesas 54
TR TR T €1 =] {27y o = V7= N AN o 1] N 55
5.3.4 GET DATA OBJIECT ACTION. . .utiiiiitteie e ittt e ieteeeesstteeesateesesebaeessesbeeeaatessesaeseesssbeseaasteseesbeeessasbesesassessesnrens 55
5.35 GET DATA FOR GEL ACTIONttttiiieii ettt ettt et e e s s ettt e s e s s s e sabb b e et s e e s s esabbbaeesaessssbbbaareeeesssasbbebeeesas 55
5.3.6 GET_OO _DATA_ACTION. ...tttitietiiieesteitier st sttt et e e r et ar et b s e e eear bt ab e et e e e b e e e an e b b nb et enee e ean s 56
5.3.7 MEDICALLY ORIENTED ACTIONtutttiiieeiiiiitttetieeeessiitbbastesssssssbbasssssesssasbassssasesssasbbabasssesssasssrsssssesssassrsns 56

6. N I T N IS T 12N 1 = T 57
7. PARALLEL PATHS IN A GUIDELINEco oottt ettt ettt e sttt sae e e s etbe e e s eatan s s sareeas 60
7.1 BRANCHING TO MULTIPLE PATHS .iiiiitttttiieeetsiitbtriee s e st seabbareesse st saabbasaessesssabbabassseessesastbasssesssesatbesssessssins 60
7.2 SYNCHRONIZING FROM MULTIPLE PATHS ...vtiiiiitteieeeetteeeeettee e s sateeessttesssseessssssessssssessesssenssssssesesassessssnsens 60

8. DEALING WITH COMPLEX GUIDELINES ...ttt ettt ettt st e st n s s eaban s s 60
8.1 NSy RN o] =l 1] (0] N OO 61
8.2 INESTING ACTIONS 1..ttttiiiieetieitttetteee e s e sttt etteeessssasbbateeesesssasbbetesasesssasbbebesaseessasbbebeessesssasantbeessesssesssbbanesasssaes 62

9. RDF-BASED SYNTAX FOR GLIF ...ttt ettt e et e et esrae e e s eabe e e e enree e e snreeas 64
10. ACKNOWLEDGEMENTS ...ttt ettt e et e st e e et e e e st e e e s st e e e e ssbbesesbeeeessabenesstbeeesnes 66
F A N o o N1 D] G NPT 67
1. Y AN O = O 1 TR 67
RISK ASSESSIMENT IMIACTO ...ttt ctee et tee et st esab e s et e st e s et e s sabe s s bessabesebessabesssbessnbesesbessnbesssbesasbesssbenssreneses 71

2. VIEWS OF A GUIDELINE ...ttt ettt e s st e s e bta e s s saba e e s s bt e e s sebrae s s sabeeas 73
3. SPECIFYING EVENTS AND EXCEPTIONS.ttt ettt e st ebta e s sabae e s s rae e eanes 78
LS T AN o o | NN 1 G = R 82
4, EXTENDED BOOLEAN.... ..ottt ettt e st e e et ae e e e bt e e e s eab e e e e aabae e e sabaeeessbbeeesenteesesnrenas 94
5. (D10 N I 1O N TSRO 101
51 UNARY OPERATORS ..1tttiitiiiiiittttteste et ieitstbesssesssaistbasssessssiasbbssssesessiabbssassseessassbtbaesseessssbtbasseeeessssbbasesesas 102

6 [RS R 104

May 4, 2004 4 GLIF3.5
6.1 UNARY OPERATORS ...ttitieuttestesttesteesteestessteaseesseesseesseanseassesssesseesteesaesssessssssesssesnseansesssesssessesssesseesssessesnes 104
6.2 BINARY OPERATORScuttiutiauteitiesteesteeateatestesieeateesbeateasbesseesbeesbeesbesbeaaseaheeabe e bt anbeasbeeb b e nbeesbeenbeeneennesans 105
6.3 BINARY OPERATORScuttiutiatttitiasteesteeateateasesteesateabeateassessbesbeesbeesbeebeeaseaheeabe e bt anbeenbeebbenbeenbeenbeebeenneenns 109
6.4 BINARY OPERATORScutteutiatteitiestiesiee sttt aeesseeabeesse e st assesseesbeesbeenbe e aease e she e abeeab e e s s e es b e ab e e nbeenbeenneeneenneenes 110
6.5 BINARY OPERATORScuttiutieutiitiesieesiee sttt sseesseesbeesse e st asse st e sbe e s be e nbe e ee s seeahe e abe e bt en s e en b e ab e e nbeenbeenreeneenneenes 111

7. REFERENCES

May 4, 2004 5 GLIF3.5

1. Introduction

1.1Purpose of document

1.2What is GLIF?

GLIF3 is a methodology that enables modeling and representation of clinical guidelines in a
structured manner. Such guidelines can be used for clinical decision support applications.

Guidelines are modeled in GLIF at three levels of abstraction: a conceptual flowchart that is
easy to author and comprehend, a computable specification that can be verified for logical
consistency and completeness, and an implementable specification that can be incorporated into
particular institutional information systems.

The GLIF3 model is object-oriented. It consists of classes, their attributes, and the relationships
among the classes, which are necessary to model clinical guidelines. The model is described
using Unified Modeling Language (UML) class diagrams [1]. Additional constraints on

represented concepts are being specified in the Object Constraint Language (OCL), a part of the
UML standard.

A top-level view of the GLIF model is shown in Figure 1. The complete class hierarchy is
shown in Appendix C.

Aggregation <> Guideline Model
E ntity
Generalization A T
Action Decision Patient state| | Branch Synchronization
Nestable Step Step Step Step Step
Guideline Macro Macro Decision Case Choice Macro
Action Step Option Step Step Decision Step

Figure 1. The GLIF model. A top-level view of the main GLIF classes

2. Overview of GLIF

2.1Scope of GLIF

GLIF is intended to be used in a variety of guidelines. Guidelines may be classified according to
the clinical domain, the stage of the medical problem and its management (e.g., screening,
diagnosis, disease management), multiple or single encounters, setting (e.g., inpatient or

May 4, 2004

GLIF3.5

outpatient clinic), time frame (emergency, acute, or chronic), and guideline computability (i.e.,
algorithmic, guiding, or intermediate) [2]. We have used GLIF to encode a variety of guidelines
including guidelines for Influenza vaccination [3], management of chronic cough [4],
management of stable angina [5], thyroid screening [6], lower back pain [7], heart failure [8],
depression [9], community-acquired pneumonia [10], hypertension [11], and migraine headaches
[12], as shown in Table 1 [13].

Table 1 — Classification of GLIF3-encoded Guidelines

Disease/ Condition Stage of Encounters| Setting | Time Frame| Computability
Problem

Flu prevention 1 outpatient acute algorithmic

Stable Angina management many outpatient | acute/chronic| intermediate

Chronic cough Diagnosis + many | outpatient acute intermediate
management

Lower back pain Diagnosis + | Many | outpatient acute intermediate
management

Heart failure management | Many | outpatient | acute/chronic| algorithmic

Depression management | Many | outpatient acute algorithmic

Thyroid screening screening 1 out acute algorithmic

community-acquired| management many infout acute algorithmic

pneumonia

hypertension management many out chronic intermediate

migraine headaches | management many out acute/chronic| algorithmic

2.2Bird’s eye view of GLIF

In GLIF, guidelines are represented as a flowchart of temporally sequenced nodes called
guideline steps. Different classes of guideline steps are used for modeling different constructs:

e The Decision_Step class represents decision points in the guideline. A hierarchy of
decision classes provides the ability to represent different decision models.

e The Action_Step class is used for modeling actions to be performed. Action steps
contain tasks. Two distinct types of tasks can be modeled: medically oriented actions
such as a recommendation for a particular course of treatment, and programming-oriented
actions such as retrieving data from an electronic patient record. Nesting of steps,
discussed in Section 8, allows recursive specification of actions and decision. In other

May 4, 2004 7 GLIF3.5

words, through nested steps, one can specify details of high-level actions and decisions as
subguidelines.

e The Branch_Step and Synchronization_Step allow modeling of multiple simultaneous
paths through the guideline.

e Patient_State_Steps serve as entry points into the guideline as well as allow for labeling
patient states (e.g., a state of taking one anti-hypertensive drug).

The GLIF specification includes an expression language that is derived from the logical
expression grammar of Arden Syntax. The expression language can be used for representing
decision criteria, triggering events, exceptional conditions, duration expression, and states.

A medical ontology allows the use of standard controlled vocabularies and reference information
models to specify linkages to individual patient data, medical knowledge, and clinical actions.
This will facilitate sharing of guidelines among institutions.

The specification for supplemental material allows one to associate didactic material with the
guideline itself or to some sections of it. The supplemental material can be in different formats
(such as plain text and HTML) and can be for different purposes (such as rationale, further
reading, patient education, etc).

2.3Layers of abstraction

GLIF3 supports representing clinical guidelines in three levels of abstraction. When a guideline
is first authored, a conceptual level of representation (called level A) is created. This level
enables the guideline author to concentrate on conceptualizing a guideline as a flowchart. At this
level of abstraction, the author is not concerned with formally specifying details, such as decision
criteria, relevant patient data, and iteration information that must be provided to make the
specification computable. The specification of these details is performed at the computable level
of abstraction (level B), where medical concepts, patient data item definitions, logical criteria,
and control flow are formally specified. We intend to create tools that will aid in the validation
and simulation of guidelines that are specified at the computable level.

Before guidelines can be incorporated into an institutional information system, actions and
patient data references must be mapped to institutional procedures and electronic medical records
(EMRs). This mapping information is represented in the implementable level (level C). The
implementable level has not yet been completed.

The different levels of abstraction are achieved by specifying values for different attributes of the
GLIF classes. For example, a decision criterion (the Criterion class) has a name attribute that
contains an English sentence that describes the criterion in free text (e.g., high LDL cholesterol)
and also a specification attribute that contains a formal definition of the criterion using the GEL
expression language

(e.g., selectAttribute(*pqg_value”, selectAttribute(*value”, Current_LDL_Cholesterol)) >= 160
and selectAttribute(“unit”, selectAttribute(“value”, Current_LDL_Cholesterol)) ==mg/dL)

May 4, 2004 8 GLIF3.5

The name attribute is specified at level A, while the specification attribute is specified at level B.
When a domain expert encodes the guideline, he can first specify the level A attributes. Later on,
an informatician can specify the level B attributes, after consulting with the domain expert. All
GLIF classes have at least one level A attribute that lets the author describe the construct in
unconstrained narrative text.

2.4Understanding GLIF3's medical ontology

Logical expressions (criteria) and action specifications reference patient data items and medical
concepts. These concepts are formally defined in the medical ontology, by referencing standard
controlled vocabularies (e.g., UMLS [14]) and standard medical data models (e.g., HL-7’s
Reference Information Model version 1.0 [14]). Defining medical concepts in relationship to
standard controlled medical vocabularies enables the guideline encoding in Level B to contain
concepts that are not institution-dependent. The institution-dependent terms can therefore be
specified only in level C, which will define the mappings between the Level B guideline terms
and the institutional terms. Defining the structure of patient data items in accordance to standard
medical data models is done to ease the process of mapping Level B guideline patient data items
to institutional EMR codes and to facilitate the process of sharing guidelines. The support of the
ontological needs for guideline modeling is separated into three layers, correlated to levels of
abstraction. The first layer, Core GLIF, is part of the GLIF specification language. It defines a
standard interface to medical data items and concepts, and to the relationships among them.

The second layer, Reference Information Model (RIM), is essential for guideline execution
and data sharing among different applications and different institutions. It defines the basic data
model for representing medical information needed in specifying protocols and guidelines. It
includes high-level classification concepts, such as medications and observations about a patient,
and attributes, such as units of a measurement and dosage for a drug, that medical concepts and
medical data may have. The default RIM that GLIF3 supports is HL-7’s Reference Information
Model (RIM) version 1, also known as the Unified Service Action Model (USAM) [15].

The third layer, Medical Knowledge Layer is still under development. It will be specified in
terms of the methods that it should have for interfacing to the following medical knowledge
sources:

1. Controlled vocabularies, like UMLS, that define medical concepts by giving them textual
definitions and unique identifiers.

2. Medical knowledge bases that define medical knowledge, such as drug hierarchies, and
normal ranges for test results.

3. Clinical repositories (EMRs)
4. Other clinical applications, such as order entry systems, alert/reminder systems.

When all three layers are involved, they work closely together: Core GLIF relies on the RIM to
supply the attributes of the medical concepts and to represent data values. Core GLIF relies on
the Medical Knowledge Layer for accessing specific medical concepts.

May 4, 2004 9 GLIF3.5

In the three-layered medical ontology, users have the freedom to choose a particular RIM and a
particular medical knowledge layer that fits their needs. We encourage guideline authors to use a
single RIM and a single controlled vocabulary to encode one guideline. This eases the process of
sharing the guideline, since mapping terms that belong to different RIMs and vocabularies is a
difficult task.

2.4.1 Core GLIF

Basic Data Type
generalization
Core_GLIF_Class Data ltem / Z} \ Data Value
..Data ltemn Relationship +zancept:Concept Semt
- - A Data ltem Value | |} ledge tem -Primitive Data Value |
-data_itern_fram:Data_ltem = +data_model_class_id:String 0.
-data_itern_to:Data_ltemn -data_model_source_idint = .
-relationship_cd:Relationship_Cod -data_value:Data_ltem_Walue[A
-ceaintyint >+ -name:String & Q L.Concept Relationship
-directionality.Directionality Global Concepts.Concept -relationship_id:String
-hame:String -concept_id:String -hame:5tring
-relationship_id:String 0 -concept_name:String -concept_fram:Concept
N -concept_source:String -l -CONCEpt to:Concept
\l/ -relationship_type:String
- relationship_source:String
interface Variable Data ttem | |Literal Data tem /P)R%/P -directionalityDirectionality
us i -2 . i s
Relationship Code +owner:String ..Data Model Instance RIM.Patient Data
+raused byint=0
[| [
Guideline_Model_Entity interface
Data Item List CoreGLIFL ayer.Directionality
+entry_array:Data_[tem]) +singlesint=0
+hoth ways:int=0

[

Figure 2. The Data model package, which is part of Core GLIF

Core GLIF defines the medical data model of GLIF3, which is, how medical data items are
structured and how they relate to medical concepts. The specification of the Core GLIF layer is
shown in Figure 2. GLIF3’s Basic_Data_Type can be a Primitive_Data_Item (shown in Figure
6), A Data_Item, or a Knowledge_Item.

GLIF clinical decisions and actions refer to patient data items. Each patient Data_ltem is
defined by a medical concept, taken from some standard controlled vocabulary, and by a data
model class and source. The data model class and source indicate the Reference Information
Model (RIM) class and RIM model that is used for defining the data item’s data structure. A data
item also has a (complex) data value. A data value is a list of Data_Item_Values. There are two
types of data item values: the Patient_Data class of the default RIM, shown in Figure 9, or from
a user-defined Data_Model_Instance class, shown in Figure 6, which is part of Core GLIF.

Core GLIF distinguishes between two types of patient data items: literals (constants) and
variables. Variable Data_lItems represent data that needs to be instantiated at run time from
external sources (e.g., electronic medical record) when the guideline is being applied to a
specific patient or to a group of patients. Patient’s height, weight, gender, and age are examples
of variable data items. A variable data item has an owner, to which the data value belongs.
Specifying the owner of a data item is necessary because sometimes even in one guideline, data
from multiple patients will be mentioned (e.g., phase-I clinical trial guidelines sometimes refer to

9

May 4, 2004 10 GLIF3.5

a cohort of patients) although most of the guidelines are not applied to groups of patients.
Variable data items are used when specifying decision criteria, as shown in Section 4.2,

A Literal_Data_Item is a data item that has a fixed value. It is similar to a constant in
programming languages. Unlike a variable data item, a literal does not have an owner and its
data value is modeled by a list of exactly one instance of Data_ltem_Value. Congestive heart
failure, female, smoker, and TSH-test-order are all examples of literal data items. The values of
literal data items are assigned at authoring time. When specifying action specifications, literal
data items are used to specify a recommended action. An example is shown in Section 0. Literal
data items are also used to specify literal values in decision criteria, as shown in Figure 42 of
Section 4.2.

A Data_Item_List is a run-time object that allows referencing different data items in a single
list. For example, all of the data items that are referred by a guideline are stored in a data item list
(See Figure 16).

GLIF3 has two types of Knowledge_ltems: Concept and Concept_Relationship. They are both
an embedded part of GLIF, unlike the Reference Information Model that can be taken from
various sources (e.g., HL7). A Concept is defined by defining its name, concept_id, the id of its
source (concept_source), that is, what local vocabulary did the concept come from. Concept
relationships are created using the Concept_Relationship class. An example is given in Figure
3.

@ExamplesE_l]l]Z?? [instance of Concept_HRelationzhip]

Name Directionality
chranic cough is-a specialization of cough -
Concept From {1 HII;E)| +| - Concept To (1 valges)C | +(=
Concept Hame Concept Hame
chronic cough cough
Concept Id Concept Id
cooto2om Coo10200
Concept Source Concept Source
LIMLS LIMLS
1B 1 [

Relationship Id Relationship Source
ROO1 Local

Relationship Type

is-a

Figure 3. A concept hierarchy. The Concept_Ids are the UMLS codes for cough and chronic cough

10

May 4, 2004 11 GLIF3.5

A (patient) Data_ltem_Relationship is a relationship between two data items (e.g., a certain
patient’s high body temperature was caused by a viral infection). Each data item relationship has
an associated code (e.g., “caused_by”), directionality, and a certainty attribute that expresses
how sure we are that the relationship holds.

When users simply want to create a human-readable guideline, a RIM or controlled vocabulary
might not be needed. When both the RIM and Medical Knowledge layers are absent, the concept,
data_model_class_id, and data_model_source_id attributes of the data item are marked as
“UNKNOWN?”. When a data item fails to be mapped to a concept, the referring concept is
automatically assigned the value “UNKNOWN”. When a data item does not have a data model
specified by the RIM layer, the type for its data value is assigned to be a Data_Model_Instance
whose values attribute is of the primitive type String_Value.

Sometimes, standard controlled vocabularies do not define a concept that the guideline needs to
express. Similarly, a guideline may need to refer to data model classes that are not supported by
the default RIM. In these cases, Core GLIF defines a way for the guideline author to define new
concepts and hierarchies of concepts, new data model classes, and to map a concept to a data
model class. The classes of Core GLIF that enable these functionalities are shown in Figure 4.

11

May 4, 2004 12 GLIF3.5

Core GLIF Class

DataModelClass
-data_nodel_source_id:String
-data_model_class_id:String AttributeDes cription interface
-name:String 0_*|-name:String Cardinakity
-attributes:AttributeDescription[] M—cardinalityf:tﬁardinaliw *single:int=0
-parent_class_jd:String -domain:Concept] Hmultiple:int=0
-parent_source_id:String

11

Conceptittribute DataModelAttribute BasicAttribute
-conceptConcept | |-data_model_class_id:string -data_type BasicDataType
-data_model_source_id:string

interface

BasicDatalype
+kExtendedBaoolean:String="ExendedBoalean”
+kinteger: String="Integer"
+KkFloat:String="Float"
+kString: String="String"
+kAbsoluteTime: String="AbsaluteTime"
+kinterval: String="Interval"
+hListString="List"
+kSetString="3et"
+kDuration:int="Dwration”

Figure 4. Core GLIF class diagram

A Data_Model_Class is an embedded part of GLIF, unlike the Reference Information Model that
can be taken from various sources (e.g., HL7). A Data_Model_Class allows a user to define
RIM classes that are not part of the default RIM. A data model class is defined by specifying its
attributes and its parent data model class, thus supporting sub-classing. GLIF’s Get_Data_Action
(5.3.4) retrieves data from the EMR and presents it in a form of a Query_Result. A Query_Result
assumes that each data value is associated with a primary timestamp. Therefore, on of the time-
attributes of a Data_Model_Class will be defined in a Get_Data_Action as the primary time
attribute.

The AttributeDescription class defines the attributes of a Data_Model_Class . Each attribute
description object has a name and cardinality. There are three subclasses of
AttributeDescription. They differ in the types of attributes that they define. The three sub-
classes are:

12

May 4, 2004 13 GLIF3.5

1. BasicAttributes, which are string, integer, float, Extended Boolean, absolute time,
duration, interval, list, and set.

2. ConceptAttributes, which define the range of concepts that are allowed to serve as the
value of the attribute. For example, if the concept attribute refers to the concept “gender”,
then the allowed values for the attribute are male and female.

3. DataModelAttributes, that are attributes whose type is another data model class.

When users define data model classes, they need to define the domain of each attribute of the
data model class, that is, what concepts would use that data model class. Therefore, every
AttributeDescription has a “domain” attribute that specifies the list of Concepts that define the
domain of the attribute. (Note: This replaced GLIF 3.1’s DataModelConcept_Map)

Figure 5 shows an example of a data model class.

@ CorelGLIF_DO0098 [instance of DataModelClazz]

Hame I

Chservarion_with_certainty

Data Model Class Id Data Model Source Id

o1 Local

Parent Class Id Parent Source Id

Qbservation LISAM

Atriutos (1 vales) Ve +[-[x]8
Hame
cerainty -
Cardinality Data Type
single | |integer | —

Figure 5. An example of a data model class with a basic attribute. Observation_with_certainty is derived
from USAM'’s Observation class and extends it by adding the simple attribute “certainty”, of type Integer.

Instances of user-defined (where the user is the guideline author) DataModelClass are defined
using the Data_Model_Instance shown in Figure 6. Examples are shown in Figure 7 and Figure
8.

13

May 4, 2004 14 GLIF3.5

Data_lterm_Value User Defined Data Model Class
Data Model Instance

-instance_name:String
-values:Instance_Value[

-conceptConcept / [r\ \
-data_model_class_id:String . Instance Yalue Data Value Parameter Hame And Value
-data_model_source_id.String]'__‘;.-parameter harne String -name:string et -parm_harme: String
-parm_value:Data_talue

e .

Concept Yalue Patient Data VYalue Primitive Data Yalue Compound Data Value
-concept value:Concept -parameter_value Dats_Value -data_value_name:String
-parameters:Parameter_Mame_And_'alue

ATSSS

Duration Value Integer Yalue Titme Stamp Value List Value
-duration_value: String -integer_value:int -tirme_starmp:String \\-nst value:Basic_Data_Type[
7 T
Extended Boolean Walue Float alue String Value Symbol Value Set Value
|-extended boolean valueExdended Boolean § |-float valuefloat | |-string value:String -gymbol_value:String -gset_value:Basic_Data_Tvpe]

|

interface
Extended Boojean
+ trueint=0
+ falzeint=0

+unknown:int=0

Figure 6. User Defined Instances Ontology

A Data_Model_Instance identifies the concept and the data_model class and source that it
refers to. It also has a “values” attribute, which is of a list of Instance_Value objects.

An Instance_Value can be either a Concept_Value or a Patient_Data_Value. Concept values
refer to concepts, as in the example shown in Figure 8. Patient data values have Data_Values,
which can be either Primitive_Data_Values (i.e., integer, float, string, time-stamp, duration,
extended Boolean, symbol, list, or set, as shown in Figure 6), or compound.
Compound_Data_Values have parameters, of type Parameter_Name_And_Type, which refer

to other data values.

14

May 4, 2004 15 GLIF3.5
E:E Examples2_ 00281 [instance of Data_Model _Instance) M=l E
Instance Name Values (2 values) VIS [=

|Sﬁ,fstnli|: hlood pressure results |

Concept {(1valuedy | T +| — | ¥

Concept Name

|Systn|ic hlood pressure result

Concept Id
|LI:|I32

Concept Source

|LEIEEI|

T

Data Model Class Id
|uu1 |

Data Model Source Id

|anal |

Parameter Hame

|va|ue

Parameter Yalue

<I» 120 mm Hg

NMEEE

Parameter Hame

||:ertaintg.r

Parameter Yalue

a8

Vel +f-

Figure 7. An instance of systolic blood pressure result, which corresponds to the locally defined

Observation_with_certainty class that is shown in Figure 5.

Instance Name

Values {1 values)

@ExamplesZ_l]l]EBE [instance of Data_Model_Instance] =] E3

vjc]+] -[x]5

Demographics

Concept (1valuedy | C | +(— | 2

Concept HName

Demodgraphics

Concept Id

C00y493949

Concept Source

LIMLS

4B = WG

Parameter Hame

nender

Concept Yalue

@*male

Figure 8. An instance of Demographics, which has a Concept_Value of the concept “gender”

15

May 4, 2004 16 GLIF3.5

2.4.2 Reference Information Model (RIM)

A RIM defines a class hierarchy that organizes medical concepts into classes. For each class, the
RIM provides a data model that defines the attributes of the different classes. We examined
several reference information models, including HL-7’s RIM version 0.94, the clinical part of
HL-7’s RIM version 1.0 (also known as the Unified Service Action Model (USAM),
foundational models in SNOMED-RT, and the National Library of Medicine’s Semantic Net,
which is part of UMLS.

We chose to use HL-7s Unified Service Action Model as our default reference information
model, because of its generality. We use RIM's Service_Action class for representing patient
data. We therefore renamed the Service_Action class as Patient_Data. We are not utilizing all of
the classes and attributes that are defined in the RIM, since we have a different approach for
modeling them in GLIF. Specifically, we are only using the Service_Action (Patient_Data),
Medication, Observation, and Procedure classes. The following changes were also made:

1. We are not representing the following attributes of the service (patient data) class:
max_repeat_number, interruptible_ind, substitution_cd, priority_cd, and
orderable_indication.

2. We added two attributes to the Observation class: severity, and certainty that we found
lacking from HL7-RIM's Service_Action class.

3. We simplified some of the attribute data types used by the RIM. For example, for
activity_time and critical_time, we only allow time intervals, and not every temporal
function.

The RIM reference information model class diagram is shown in Figure 9. Figure 10 shows
the enumerated codes used by the RIM reference information model.

16

May 4, 2004 17

RIM Entity

Ciata_ltermn_Walue

Patient Data
-service_cd:Cancept
-mood_cd:Mood_Code
-id:string
-status_cd Status_Code
-activity_time Time_Interval
-critical_time Time_Interval
-recarding_time: Time_Literal
-method_cd:Concept
-hody_site_cd:Concept
-interpretation_cd:Interpretation_Code
-canfidentiality_cd:Confidentiality_Code
-ctitical_duration:Duration_Interval

% Do

Ohservation
Medication -walue:Observation_Walue
-check_dose_guantity.Physical_qu| [-derivation_expression:string
-doseform_cd:Doseform_Code -hormal_rangeRange
-dosage_guantityPhysical_Guantit | [-certaintyint
-rate_guantity Physical_Quantity -severityint
-strength_guantity:Physical_Quantic

-route_cd:Route_Code

Ohservation Value

= P

Index -—"1 Text Value Physical Quantity
-indexfloat -text:string -po_value:float
-precisionint -precision:int

-unit:string
-display_name:String

Figure 9. HL-7’s RIM class diagram

GLIF3.5
Procedure
-entry_site_cd:Concept
Ratio Range

[-numeratar:int
-denomersatarint
=

-display_name:String

-loweer_hound:Physical_Quantity

| |-upper_hound:Physical_Guantity

-display_name:String

17

May 4, 2004 18
interface interface
Confidentiality Code Interpretation Code

+normalint +normalint

+restricted:int
+individual:int
+owsint

+husiness:int
+sensitiveint

+ahnarmal:int

+helow low normalint

+above high normaling
+abnormal alertint

+helow lower glert threshold:int
+above upper alert threshold:int

+suppositonint

+sinnificant chanoge upint
+significant change downint

+imoderately susceptible:int
+helow absolute low off instrum
+ahove absolute high off instrurr
+ahnarmal consistent with old a
+hearly normal and stablecint

+tabooint

+relebrityint +hetter:int

+rlinician:int +worseint
interface +resistantint

Doseform Code +intermediateint

+rapsuleint

+abletint

interface

Status Code
+ newint
+eanceled:int
+held:int
+ahorted:int
+suspended.int
+active:int
+completed:int
+superceded:int

+susceptibleint
+ery susceptibleint

interface
Route Code

+apply externalyint
+huccalint

+dental:int

+epidural:int

+endotrachial tubeint
+astrostomy tubeint
+astrostormy tube irigantint

+immerse body parint
+intra arerialint
+intrabursalint
tintracardiac:int
tintracervicalint
+intradermal:int
+inhalation:int
+intramuscularint
+intrahepatic arteryint
+intranasalint
+intraocularint
+intraperitonealint
+intrasynovialint
+intrathecal:int
+intrauterineint

interface

NMood Code
+definitionint
+orderint
+intentint
+option:int
+order not tocint
+eventint
+event criterion:int

Figure 10. The codes used by the HL7-RIM ontology

Fintravenous:int
+mouth throatint
Hmucous membranceint
+nasalint
thnasogastricint
+hasal prongs:int
+nasotrachial tube:int
+ophthalmic:int
+oralint

+otic:int
+perfusion:int
+rectalint
+rehbreathal maskint
+soaked dressingint
+zubcutaneousint
+zublingualint
+topicalint
+racheostomeyint
+Hransdermalint
Hranslingual:int
+urethralint
+wadinalint
+wound:int

GLIF3.5

18

May 4, 2004 19 GLIF3.5

Examples of RIM Observation and Medication are shown in Figure 11 and Figure 12,
respectively.

@Euughﬁtudy_l]lﬂﬁﬂ [inztance of Obzervation]
SEnncecu{walMs{}C +| =X Id
Concept Name
+ || =
LDL Cholesteral Method cd V]c
Concept Id
0073574 Severiy Certainty
Concept Source
LIMLE Status Cd Confidentiality Cd
F |:;:;:;:; = =
Mood Cd Body Site Cd VIC| +| -
event -
value{1valuesiﬂ|ﬂ| j| j|ﬂ| Interpretation Cd vic| -
Py Yalue Unit
160.0| [mogidl
Precision
Hormal Range VIS +| -
= | I
Critical Time VIC| +| —=| Critical Duration VIC| +| -
<@> (nowy - rmaonth, nowd
Activity Time VIC| +| = Recording Time VIC| +| -

Figure 11. An example of a RIM observation showing an LDL cholesterol of 160 mg/dL that was taken within
the past month

19

May 4, 2004 20 GLIF3.5

@ExamplesZ_l]l]ZElB [instance of Medication]
Service Cd (1valiég)C | +| — | %] Ba| 1
Concept Name
ACE Method Cd VIC| +| -
Concept Id
00030145 Status Cd Confidentiality Cd
- -
Concept Source
LIMLS Interpretation Cd vic| -
4|
Mood Cd
event -
Critical Time VIiC|+| -
@ (1899-12-03, 2000-07-04)
Activity Time VIC| +| -
ity Body Site Cd Vic| +| -
Recording Time + | -
= Ve Doseform Cd Route Cd
w w
Dosage Quanti VIC] +| -
4 ty Strength Guantity VIC| +| -
Rate Quanti VI|C| +| -
ity Critical Duration VIS +| -
Check Dose Quantity VIC| +| -

Figure 12. An example of a RIM medication showing that ACE inhibitor was used for some time interval

May 4, 2004 21 GLIF3.5

2.4.3 The Medical Knowledge Layer

As was mentioned before, the medical knowledge layer will contain interfaces to controlled
vocabularies, medical knowledge bases, and EMRs. It will be specified in terms of the methods
that it should have for interfacing to the medical knowledge sources.

The medical knowledge layer is still under development. Nonetheless, we do view this layer as a
very important part of the GLIF ontology, especially for the purpose of integration into local

institutional environments.

3. Creating a guideline

Maintenance Info
-title:String intarface
-authorString[=] Guideline Status
-guideling_warsion: String +published: String="published"
-authoring_date:String +unpublished:String="unpublished
-encoder:String(+obselete:String="obselete"
[r\ -encoded_guideline_version:5tring
-GLIF _wversionGLIF _Yersion

Guideline_Model_Entity
Hestahle

Guideline

-algarithrmcAlgarithm
-maintenance_info:Maintenance_Info
-intention: String

-encoded_last_modification_date:String interface
-guideline_status: Guideline_Status
-representation_status:Representaion_Status

GLIF Version

+GLIF2:String="GLIF "

-developing_institution:String +GLIF3:String="GLIF 3"

-adapting_institution: String

-eligibility_criteria: Criterion
-didactics:Supplemental_Material_List]
-default_viewveriew_Specification
-exceptions:Guideline_Exception[interface
-data_iterns.Data_ltem_List Guideline_Madel_Entity
-let_expressions:Let_Expression] Algorithm
-parameters_passed:Parameter_Passed -first_step:Guideline_Step
-steps.Guideline_Step[]

Representaion Status
+production:String="productio|
+research:String="research"
+esting:String="testing"

0. +expired: String="expired"
interface
Guideline_Model_Entity Parameter Passed Direction Passed
Guideline Collection -direction:Direction_Passed | +inint=0
-guidelines:Guideling] -vatiable_data_itermVariable_Data, +outint=0

-variahle_type:String +in and autint=n

Figure 13. The Guideline Package

The Guideline class is used to model clinical guidelines and sub-guidelines (described in Section
5.3.1). A guideline contains an Algorithm, which is a flowchart of guideline steps. GLIF’s
guideline class specifies Maintenance_information (such as author, guideline_status,
encoded_last_modification date, and guideline_version), the intention of the guideline, eligibility
criteria, didactics, and the set of exceptions that interrupt the normal flow of execution of the
guideline. The guideline defines patient data items that are accessed by it and parameters that the
guideline passes in and out to other sub-guidelines. A guideline also has “let expressions” that
define global definitions (see Section 3.8). For each guideline, default viewers may be specified.

21

May 4, 2004 22 GLIF3.5

Since different users may be interested in different parts of a large, complex guideline,
differential display capability is supported. This capability is provided through the use of filters
that collapse segments of the guideline into a default view of the guideline customized to a given

user, situation, etc.

A Guideline_Collection object identifies the primary (top-level) guidelines in a guideline file.
There is only one Guideline_Collection object per guideline file. There are other guideline

objects in a file. These are subguidelines.

An example of a GLIF-encoded guideline that was authored using the Protégé authoring tool is

shown in Figure 14.

EaStahIeAngina_INSTANCE_I][II]IH [instance of Guideline]

Hame

|."-\CC AHAACP_ASIM Guidelines for the Management of Patients with Chronic Stahle Angina: Clinical Assessment |

Maintenance Info E@EE Intention

‘Manage patients with charonic stahle angir*

Eligibility Criteria W IF||T| = | Didactics W ’am -

<I> Chest Pain KI> Gtable Angina guideline URL

Algorithm E@BB
Default \iewer @@BB

Figure 14. A Stable Angina guideline that was encoded in GLIF using the Protégé authoring tool

3.1Header information

The Maintenance_Info class, shown in Figure 13, represents maintenance information related to

guidelines. An example is shown in Figure 15.

22

May 4, 2004 23 GLIF3.5

ﬁﬁtableﬁ.ngina_INSTANEE_m 555 [instance of Maintenance_Info]

Title

|Guide|ines for the managerment of patients with chronic stable anginag

Authors W @ —

Raymond J. Gibbons Guideline Status Represental
Kanu Chatterjee | published ~ || reserach
John S. Douglas
Stephan D. Fihn Encoder
Julius M. Gardi

ulius ardin Mor Peleq

Mark A, Grunwald

Daniel Levi

Bruce W, Lytle

Fohert A O'Rourke
illiam P, Schafer

Sankey V. Williams

Authoring Date Encoding Last Modification Date
June 1999 | |o3mtion

Elmer Bernstan

Guideline Yersion

| | Encoded Guideline Yersion

1o

Developing Institution W ﬂ =
Bmerican College of Cardiology

Armierican Heart Association |3-U
American College of Physicians-American Saciety of Internal Medicine

GLIF Yersion

Adapting Institution

Figure 15. Maintenance information of the stable angina guideline shown in Figure 14

3.2Parameter passing

By default, data items are not shared between guideline and sub-guideline. The reason for this is
that guidelines and sub-guideline can be relatively independent of each other and may not be
created by the same authors. Each sub-guideline has a data-items list that lists all the data items
that it uses.

Sub-guideline sometimes may require some data from the calling guideline. Such needs should
be explicitly declared in the form of a parameters-passed list. For each parameter in the list, the
permitted passing direction (IN, OUT, IN/OUT). IN means that the parameter value may be read

23

May 4, 2004 24 GLIF3.5

but not written. OUT means that parameter value may set, but cannot acquire values from
outside the sub-guideline. IN/OUT means that the parameter value may be both read from the
outside, and reset. The parameters passed can be data items or variables. A pointer that points to
them specifies data items. Variables are specified by indicating their name and type.

Referencing a sub-guideline transfers control from one guideline to another.

The figures below show an example of a main guideline (treatment of cough) that passes
parameters in and out to a sub-guideline called *“cessation of smoking/ACEI.

Guidelines need to be aware of the data items that they use (in decision criteria and action
specifications). They also should define parameters that are passed to them and/or that they pass
out. For example, the treatment guideline, whose algorithm is shown in Figure 17, defines
several data items in its data_item_list slot, as shown in Figure 16. Some of these data items
(e.g., pregnancy) are not parameters that need to be passed to other guidelines. The
parameters_passed slot specifies the parameters that need to be passed in or out of other (sub)
guidelines. For example, the treatment guideline has a sub-guideline called *“cessation of
smoking/ACEI”. The sub-guideline needs to “read” the following attributes from the outer
treatment guideline: ACEI, smoker, cough, and X_Ray_done. Therefore, the treatment guideline
needs to export these parameters out (to the sub-guideline). The cessation of smoking/ACEI sub-
guideline may perform an X-ray. It will then need to change (export out) the values of the
following data items: X-Ray_done and X-Ray_result. The treatment guideline will therefore
need to import (read in) these two data items. Similarly, Further_Test Can_Be_Ordered needs to
be passed in and out between the treatment and cessation of smoking/ACEI guidelines (see also
Figure 18). The Time_Of Stopping_Smoking ACEI_Order needs to be passed out of the
cessation guideline and into the treatment guideline.

24

May 4, 2004 25 GLIF3.5

{{E CoughMewl_01555 [instance of Guideline]
Name Let Expressions VIC| +| 1=
Treatment of Cnugh |® E}{pEEtEd_DatE_Df_DE”VEW o
8% CoughMewl1_01732 [instanc... *
Eligibility Criteria MR P 2 Coushhew1 01732 (instanc... IM[IE3
Name
Treatment data items
Maintenance Info VIC| +| -
Entry Array VS| +| -
Algorithrm vic| +| - ‘L PRDS_Asthma_GERD_not_evaluated
@ Treatment |
Intention
PHDOS_Asthma_GERD_not_evaluated
LIncommaon_condition_not_evaluated
ACEI
+ || =
Data tems vViC PNDS
@ Treatment data items Further_Tests_Can_Be_Crdered
#_Ray_done
Default Viewer VIC| +| -
Parameters Passed VIC| +
¥_Ray_done infout
Further_Tests_Can_Be_Ordered infout
smoker out
ACEl out
coudh out
Tirme_of_Stopping_Smoking_ACEl_Order in
F-Ray resultinfout =

Figure 16. The “treatment of cough” guideline and the lists of data items that it uses and parameter that it

passes/are passed to it by other guidelines.

25

May 4, 2004 26 GLIF3.5

E% CoughNewl_00833 (instance of Algorithm) M=l E3

Name First Step |7
|Tre atment | <I> Start of Tr
Steps £yl A ?
Start of
Treatment

wiait for Evaluate
PHDE, GERD,

[4]

| ¥

Figure 17. The treatment of cough algorithm that calls a sub-guideline called “cessation of smoking/ACEI”

May 4, 2004

27

{{E CoughMewl_01020 [instance of Guideling]

Let Expressions VI C

@' Cesszation of stmokinglACEl

Intention

Data ltems V(IC| +] =

Hame

Cessation of smokinafACEl

Eligibility Criteria VI|C| +| -
Maintenance Info VIC| +| -
Algorithm viCc|+| -

@ CoughMewl_01730 [inztance _.

Hame

 EEE

Cessation of smokingfacEl

Entry Array WViC

@' Cessgation of smokingfACE

Default Viewer VIC| +]| -

Parameters Passed

Further_Tests_Can_Be_Ordered infou
smokerin

Qrder stop ACEI

Smoking

ACEI

Qrder stop smaoking
Furher_Tests_Can_Be_oOrdered
Cough

¥_Ray_done

Titme_of_Stopping_Smoking_ACE|L_Order

¥_Fay

ACElin

coudhin
¥_Ray_done infout
#-Ray result out

Time_of_Stopping_Smoking_ACEl_Order out

-

GLIF3.5

Figure 18. The “cessation of smoking/ACEI” guideline and the lists of data items that it uses and parameter

that it passes/are passed to it by the treatment of cough guideline.

27

May 4, 2004 28 GLIF3.5

3.3Building the flowchart

The flowchart is an instance of the Algorithm class. It may contain one or more instances from
any of 5 classes of guideline steps: action, decision, branch, synchronization, and patient state
(see sections 3.4, 3.5, 3.6, 3.7, and 6. The first_step attribute indicates the starting point of the
algorithm. Next step, branches, and options attributes of the algorithm’s guideline steps provide
the flow among the steps of the algorithm. Examples of algorithms can be seen in Figure 19 and
Figure 20. The Algorithm class diagram is shown in Figure 13.

EAEE AHA ACP_ASIM Guidelines for the Management of Patients with Chronic Stable Angina: Clinical Assessment

|ACC AHA ACP_ASIM Guidelines for the Management of Patients with Chronic Stable Angina: Clinical Assessment | <§',> Chest pain. Cause unknown
Steps A2 8[Al vic
q Baszedanhistary, what ;
Patient ; - L
: Diaghostic jgithe probahility of p Mon-cardiac Tiiesi
Histary and _,. "~ - cause of chest - -
" Tests coronary atery 11T painz .~ mom cardEE " thest pain Approptiately
. disease? :) '
<action step> edium Diagnostic 7
T 5 tests for cause
Chest pain. igh of chest pain
Cauge
unknoun Intetmediate Or Soe AHCER
<pat|ent state 5t6p> High Risk Unstahle e . Unstgble wLnstable Angina
ision Sdne? Angina Guideline
<decision’s
alse
Recent MI, Recent M, See appropriate
FTCA, — » PTCAOr e ACC-AHA
CABG? CABG Guideline
Jralse
o Angina resolved
pregsstdtlr?ztncsoul with treatment of
cause angina? unde.rl.\,rmg
condition?
alse
Histarpandiorexam spects Gee ACCTAHA
sungests valular, Structura)) Documented e b
et Heart | —=—Echocardiogram __ Sewere prirnary et walyular Heart
ventricular dysfunction? Disease abnormality Disease
e Guideline
Ise rue Jfalse
Frokiabilite of GAD, Ly
hased on histary, .
exarn and EGGo abnarmality?
iogth igh =
Enter Stress Testing ¥ CAD. nd|cat|qn fq Proic” Empiric Presumed Stable
Angi I — . Evaluation - prognostic frisk ~falzEs Stahle o p X
naingraphy algarihm Reguired assessment Angina Therapy —* Andina after . Treatment
Empiric Therapy

Figure 19. An algorithm for the stable angina guideline shown in Figure 14

28

May 4, 2004 29 GLIF3.5

Set
PHDE_AsthrSREERENA 0T evalueated Mo Sinug
to false] CT Sean
n > n = n

" <branch step>
<action step>

-~ i
n
& 4view sinus Is e Treat far
rowest radlo.graph . yes, smu.sms 4
.. no no &
<decisionstep> L~
A PNDE 1
n | |
i

no” <sync step>

Figure 20. The algorithm for evaluating Post Nasal Drip Syndrome (PNDS) as the cause of chronic cough in
immunocompetent adults.

As described earlier, the steps of the algorithm are subclasses of the Guideline_Step class. Each
subclass is used for a step with a different purpose. Each step has a name and associated
didactics. The hierarchy of guideline steps is shown in Figure 22.

Guideline_Model_Entity

Strength Of Evidence Or Recommendation i
cul:lingt scheme:Strin Guiidelite Ste i Seen S St m
o~ ’ . -didactics:Supplemental_Material_List] <"} -label:Siring

-strength:String -patient_state_description: Criterion
-next_step:Guideline_Step

-nesy_encounter:Boolean

-strength_of_evidence:Strength_Of_Evidence_Or_Recommendation et ste

/P A %e;ﬁ_steﬂ /_I‘& e -trigggering events:Trigaeting Eventl] B
hranch
Action Step

tasks Action_Specification] Branch Step

-iteration_info:lteration_Specification next Sten | | orger caonstraint:Order_Constraint

-trigoering_events: Triggering_Event] -hranches.Guideline_Step Package. Guideline_Step(l

-exceptions:Guideline_Exception(

-duration_constraint: Duration_Interval \l(

-next_step:Guideline_Step_Packane.Guideline_Step Synchronization Step

-strength_of_recommendation:Strength_0Of_Evidence_Or_Recan -continuation:Logical_Expression_Of_Guideline_Step HISIEES

-next_stepiGuideline_Step | Order Consiraint |
+parallelint=0
ﬁl +any_orderint=0
Macro Action Step Guideline Step Package.Decision Step Package.Decision Step

iteration_info:lteration_Specification
-triggering_events: Triggering_Event]

-exceptions:Guideline_Exception] Logical Expression Of Guideline Step
-duration_constraintRange_Of_Duration -logical_expression_of_guideline_step:string
-options:Decision_Option[]

-decision_detailMestable

-autormnatic_decision:Boolean
-default_option_when_automatic.Decision_Option

Figure 22. The Guideline_step class hierarchy

29

May 4, 2004 30 GLIF3.5

3.4Action Steps

Action Steps specify clinical actions that are to be performed in the patient-care process. An
action step specifies a set of tasks (Action_Specifications, discussed in Section 5.3) that need to
be performed. The order in which the tasks are executed is not specified. The action step has
attributes that specify its strength of recommendation, strength of evidence®, didactics, iteration
information, duration range, triggering events, and associated exceptions (events and exceptions
are discussed in Section 3 of Appendix A. Action Steps can be refined by including a task of
Subguideline_Action type in the step. The Subguideline_Action task has a (sub)guideline
attribute that contains the nested subguideline. An action step has a next step attribute that is
used to specify the step to go to once this step has finished execution. When a guideline step has
finished its execution and the control flow is about to pass to the next step, then, if the next step
has associated triggering events, then this next step is executed only after one of its triggering
event occurred. An example of an action step is shown in Figure 23. The class diagram of the
action step is shown in Figure 22.

@ StableAngina_INSTANCE_D0013 [instance of Action_Step)

Mame

|Diagnostic Tests |

Tasks me —| Didactics me -

Fasting Glucose Level
Fasting Lipid Panel
Hemaoglobin
RestECG
Chest®-Ray

EBCT

Next Step E@EE lteration Info V@D =

Figure 23. An example of an action step

3.5Decision Steps

Decision steps, shown in Figure 31, conditionally direct flow from one guideline step to another.
GLIF provides a flexible decision model through a hierarchy of decision step classes. The
Decision Step allows specification of deterministic as well as non-deterministic decisions.
Examples of decision steps are shown in Figure 20. The decision hierarchy can be extended in
the future to model decisions that consider uncertainty or patient preferences. The hierarchy
might be extended to support different decision models.

! Strength of evidence marks the way the guideline authors evaluate the strength of evidence that
supports a recommendation. Strength of recommendation indicates whether the guideline authors
want the physician to follow the recommendation in every case, or do they relax the
recommendation

30

May 4, 2004 31 GLIF3.5

Decision Steps are nested by specifying a (sub)guideline in the decision_detail attribute of the
step. This subguideline is executed before the decision criterion for that step is evaluated. The
subguideline would modify or create new variable data items and assign them values. The use of
these variables in the decision criteria makes the decision nested. An example of a nested
decision step is shown in Figure 54 and Figure 55. Like the action step, a decision step has
attributes that specify its strength of recommendation, strength of evidence, didactics, iteration
information, duration range, triggering events, and associated exceptions (events and exceptions
are discussed in Section 3 of Appendix A.

The decision hierarchy is discussed in greater detail in Section 4.1.

3.6Branch Steps

The branch step is used to model concurrent guideline steps. Branch steps direct flow to multiple
guideline steps. All of these guideline steps must occur in parallel. A branch step may link a
guideline step to any other guideline step. An example of a branch step is shown in Figure 24.
The class diagram of a branch step is shown in Figure 22.

The selection method (e.g., “one of”) that characterized the branch step in GLIF2 was removed
so that the branch step would not semantically overlap the case step.

Like every other guideline step, branch steps have didactics and strength of evidence.

B8 DecisonExamples_INSTANCE_00191 [instanc... [Hj[=]

Hame First Step B

Breast Cancer Clinical Trial Protocol

Steps

<action step>

Randomization

ﬂihronization step>

Stratification N

<branch step>

Base-line
study

[4]

4 [

| ¥

Figure 24. An example of branch and synchronization steps

31

May 4, 2004

32

3.7Synchronization Steps

Synchronization steps are used in conjunction with branch steps. When multiple guideline steps
follow a branch step, the flow of control can eventually converge in a single step. Each branch
may lead to a series of steps, resulting in a set of branching paths. The step at which the paths
converge is the synchronization step. When the flow of control reaches the synchronization step,
a continuation attribute specifies whether all, some, or one of the preceding steps must have been
completed before control can move to the next step. The continuation is expressed as a logical
expression of guideline steps (e.g., ((Step_A or Step_B) indicates that flow must continue once
either Step A or Step B are completed). The syntax of the expressions for specifying continuation

is as follows:

Logical_expression_of_guideline_steps: Guideline_Step |
(Logical_expression_of_guideline_steps) | not Logical_expression_of _guideline_steps |
Logical_expression_of guideline_steps and Logical_expression_of _guideline_steps |

Logical_expression_of_guideline_steps or Logical_expression_of_guideline_steps | >= Integer

Like every other guideline step, synchronization steps have didactics and strength of evidence.

3.8First look at expressions

Guideline_Model_Entity
Let Expression

-identifier: String
-e¥pression_string: String

_'_I;l.--*

Glohal_Concepts
Global Concepts.Expression
-specification:String
-encoding_language:Expression_L

[

GLIF3.5

Guideline Model::N

Guideline Expression

Global Concepts.Duration

-didactics:Supplemental_Material_List]

interface
Three Valued Type

+Hrue waluefloat
+false waluefloat
+unknown valuefloat

-let_expressions:Let_Expression]
-get_data_iterms:Get_Data_Action]

-encoding_language:Expression_Language

-data_knowledge_ltems:Get_Knowledge_Action[]

-display_name:String

[

A

7

Criterion

i

Three Valued Criterion

inheritance

Guideline Duration Expression

Guideline Duration Expression B
should be used for GLIF classes
hut not for external RIM classes

32

May 4, 2004 33 GLIF3.5

Figure 25. The Guideline_Expression hierarchy

The Guideline_Expression class is a parent class for all expressions, whether they are (logical)
criteria (e.g., Age > 32), or simply expressions (e.g., Age). Expressions may have arithmetical or
text data items, can contain temporal information, and can refer to single variable data items or to

lists of data items. Examples of different expressions and criteria are shown in Figure 26.

Different expression languages can be used with the Guideline_Expression class. Previously, we
had developed a language called Guideline Expression Language (GEL) [16] that is based on the
Arden Syntax [17]. A BNF grammar for GEL as well as a list of operators that are part of GEL
but are not present in Arden Syntax and vice versa are presented in Appendix B. The
Get_Data_Action_Specification (see Section 5.3.4) is used to retrieve data item values from
EMRs. The retrieved data is presented in the form of a Query_Result that can be use by GEL

expressions or criteria.

However incompatibilities between this language (which was designed for a time-stamped, list-
oriented data structure) and the object-oriented CIM soon became apparent [18]. We thus
redesigned the language to an object-oriented form. This new language, dubbed GELLO [19]
(loosely for “guideline expression language, object-oriented”), supports query and expression
formulation. In this language, the queries and expressions share a common object-model because
the results of queries are used (as variables) in decision criteria and other expressions, and

because expressions are used as data selection predicates in queries.

GELLO query statements [20] map patient data (that are subsequently used in expressions) to
entries in the medical record. The query syntax has been designed in the context of the decision-
support execution model proposed in the HL7 Clinical Decision Support Technical Committee
(CDSTC). This model envisions the use of a “virtual medical record” (vVMR) compatible with the
HL7 RIM that provides a standard data model as an intermediary to heterogeneous medical
record systems [21]. In the current GLIF specification, the CIM serves the function of a VMR
data model. The specifications for a standard VMR are being developed in the HL7 CDSTC. We
will adopt the standard model when it is published. Note that the query syntax for GELLO does
not depend on specific classes or tables in the vMR. However, it does depend on the general

33

May 4, 2004 34 GLIF3.5

framework of an object-oriented data model. The query statement below? retrieves currently
active ACE-inhibitor medication prescriptions for a patient:

Medication->select(meds :
meds.service_cd.equals(
Concept.new(“ACE-inhibitor”, “C-80150”, “SNOMED-CT")) and
meds.critical_time.max_time_stamp.greaterThan(now))

The expression syntax is strongly-typed and object-oriented. In addition to basic data types and
operations, it allows the use of classes, class attributes, and methods that can be used to create
complex mathematical, logical, and temporal expressions. The expressions often consist of
operations over variables initialized by the queries, (e.g.,
active_ACE_inhibitor_orders.is_empty(), where active_ ACE_inhibitor_orders is a variable

assigned the result of the query above).

Work on the GELLO expression and query language is continuing in the HL7 CDSTC and other
committees to extend the application of GELLO to different specifications in HL7 that require
constraints, expressions, and mapping of variables to data. Among potential application
specifications are those for guidelines, Arden Syntax rules [17], and templates. Accordingly, the
focus of the effort is on making the language independent of particular data models, making it
free of side-effects (i.e., preventing GELLO expressions from altering application variables), and
compatible with the basic datatypes specification in HL7’s version 3.0 specification.

% The GELLO language had evolved rapidly during the latter part of the InterMed project. The example here uses
the syntax that is based on Object Constraint Language (OCL) .20 Warmer J, Kleppe A. The Object Constraint
Language: Getting Your Models Ready for MDA. 2nd ed. Boston, MA: Addison-Wesley Pub Co; 2003.. In an
earlier version of GELLO, used in GLIF 3.5, the syntax was based on Object Query Language .25 Cattell RGG,
Barry DK, Berler M, Eastman J, Jordan D, Russell C, et al., editors. The Object Data Standard: ODMG 3.0. San
Francisco, CA: Morgan Kaufmann Publishers; 2000. and Temporal Structured Query Language .26
Snodgrass RT. The TSQL temporal query language. Boston, MA: Kluwer Academic Publishers; 1995..

34

May 4, 2004 35 GLIF3.5

Arithmetic expressions:
heart_beats_per_min /60
5+6*7/8

Criterion that involves string literal data item:
test_ name == “Serum_Potassium” (test_name is a variable data item)

Criterion that involves a list of variable data items
Cough is in Problem_list (where Cough is a concept, and Problem_list is a list
of concepts)

Criteria that involves a single data item
Latest LDL_Cholesterol_Test Result < 160 mg/dL

selectAttribute(*pg_value”, selectAttribute(“value”, Current_LDL_Cholesterol))
>= 160 and
selectAttribute(*unit”, selectAttribute(*value”, Current_LDL_Cholesterol)) ==mg/dL)

Criteria that contain temporal operators

(smoking_end_time >= now and chronic_cough_end_time >= now)

latest_LDL_Cholesterol_Test_Result_recording_time is before 1998-12-20

latest_ LDL_Cholesterol_Test Result_recording_time is after week 3 _of pregnancy

latest_ LDL_Cholesterol_Test_Result_recording_time is within past 15 days

latest LDL_Cholesterol_Test Result_recording_time is within 1999-12-
03T20:46:01 to 1999-12-10T20:46:01

blood_pressure_reading occurs at 1995-03-20T18:30:15

previous_chemotherapy is not within past 2 years

Figure 26. Examples of GEL expressions and criteria

Evaluating criteria
Currently, GLIF supports only three-valued criteria. In the future, probabilistic criteria might be
added. The temporal criterion

(smoking_end_time >= now and chronic_cough_end_time >= now)

evaluates to “true” if the patient is a smoker and has a chronic cough. It evaluates to “false” if the
patient is not a smoker, or does not have a chronic cough, or is neither a smoker nor has a
chronic cough. It evaluates to either “unknown” or “false” if it is unclear whether the patient is a
smoker or has a chronic cough. The interpretation of a non-existing value as false or unknown
should be defined by the implementation and should depend on the data item.

Referring to time-literals

Time literals in GEL involve a specific instance in time (expressed as yyyy-mm-
ddThh:mm:ss.millisec(Z|+/-hh:mm) based on Arden syntax notation, which, in turn, is based on
the ISO standard 8601:1988. [22]. Z is the abbreviation used for Coordinated Universal time,
also known as the "zero meridian™ time. When Z is not used, local time is assumed. The string

35

May 4, 2004 36 GLIF3.5

+hh:mm can be added to the time to indicate that the used local time zone is hh hours and mm
minutes ahead of UTC. For time zones west of the zero meridian, which are behind UTC, the
notation -hh:mm is used instead. For example, Central European Time (CET) is +0100 and
U.S./Canadian Eastern Standard Time (EST) is -0500. Examples of time literals are “1999-11-
22T08:30:00”, “2 days before 1999-11-22T08:30:00”, “2000-09-19T12:31:42.435-04:00”, and
“2000-09-19T12:31:40.1257".

Let Expression: Let expressions are used to define global definitions. At execution time, the
identifier of a Let Expression is replaced by the expression_string of the Let Expression, just
like in a macro substitution of programming languages. This occurs every time the identifier of
the Let Expression is encountered. Let Expressions enable guideline authors to represent
definitions that they can later on refer to. The example of Figure 27 shows that Age is defined as
the current time “now” minus the date of birth (DOB), where DOB is a global variable data item
and “now” is a globally defined temporal operator.

A Let Expression can be used to define global definitions or local definitions. If the let
expression is defined as an attribute of a guideline object, then the let defines a global definition.
If the let expression is defined as an attribute of a Guideline_Expression object, then the let
defines a local definition.

Let Expressions are similar to Assignment Action Specifications, discussed in Section 5.3.2. The
difference is that an Assignment Action assigns an identifier the result of the expression_string
once. After that, the identifier’s value remains constant throughout the execution of the guideline
and is not reevaluated every time the identifier is encountered.

B8 E xample_DataModel_00011 .. [M[=] E3

Hame

Ale

Identifier

Ane

Expression String

nowy - Date_O7_Rirth

Figure 27. An example of a Let Expression

36

May 4, 2004 37 GLIF3.5

3.9Documenting the guideline

Guideline_Model_Entity
Supplemental \aterial List
-purpose:Supplemental_Material_Purpose
-items:Supplemental_Material[]

interface
Suppiemental Material Purpose
+Commentint
+Patient Education Material:int

0. +Tutorialint
Guideline_Model_Entity —+EV|UE_HC§_Zlﬂt
Supplemental Material +lndexing:int

-MIME_tipe_formatMIME type

T T

Text Material Material URL Keyword Didactic interface
-rmaterial:String -url:string -kevwords:Concept]) NIRE hype
+TEXT PLAIM:int
+TEXT HTML:int
*MAGE GIF:int
*MAGE JPEG:nt
+MOY QT int

Figure 28. The supplemental material package class diagram.

Supplemental material can be used to include additional documentation for a guideline.
Supplemental material can be of different formats such as text material, URLs, and keywords.
The Supplemental_Material_List class is used to package a number of different supplemental
material objects that serve the same purpose. The purpose of the Supplemental _Material_List
class can be selected from the enumerated type Supplemental_Material_Purpose.

All the different formats of supplemental material are sub-classes of the Supplemental Material
class. All supplemental materials define their format through the Mime_Type_format attribute.
The domain of this attribute is a Multipurpose Internet Mail Extensions (MIME) type such as
text/plain, text/ntml, image/gif, and mov/qt.

37

May 4, 2004 38 GLIF3.5

(Action_Stem

name: Prescribe Ampicillin

didactics didactics

didactics

(Supplemental_Material_List) (Supplernental Material Lish (Supplemental _Material_List

‘ narme: Costinformation ‘ | name: Indexing terms ‘ | name: Ampicillin and strep ‘
purpose: Comment purpose: Indexing purpose; Evidence

itemsi iterns iterns
(Text_Material) ; ; material_URL
| | kewweard Didactic) | Ters !
MIME_type_format: text/plain ‘ LM|ME type_forrnat null J ‘ MIME_type_format: teptihitml ‘
material: Ampicillin is & cheap drug url: hitp: i pubmed.nlm.nih.gowsearch. pyPterm=ampicillinéterm=strep

keywords keyrwords ®
Text Material

(Keyword) (Kevward) | |
| | | | ‘ MIME_type_farmat texthtm| |
Here are some local results for Ampicillin in strep infections...

concept_name: strep
concept_id: CO032

concept_name: antibiotic
concept_id: CO0001
wocabulary_id: UMLS

Figure 29. An example of supplemental material packages.

3.10 The Global Concepts

Glohal Concepts

Time Interval Time Literal Expression Duration Interval Basic_Data_Type
—display_name:String - -millisecond:int -specification: String -display_name:String Data.Knowledge ltem
-max_time_stamp:Time_Literal -secondint -encoding_language:Expression_L M -min_duration:Duration
-min_time_stamp:Time_Literal == -Mminutecint -rnay_duration:Duration 2

-hourint

-dayint Z‘X W

-maonth:int - Concept
interface —yearint Duration . -

Tite Zorte —time. zone:Tirme_Zone -display_name:String -concept_id:Sting
+UTCint=0 - = -concept_name:String
———="=— = -plus_hourint concept i
+ESTH:int=0 . . - pt_source:String
E— -display_hame:string .
+P&Tiint=0 interface
+CETuint=0 |Expression Langliade |
M Tint=0 *GELiNt=0

+otherint=0

Figure 30. The global concepts package

In this package we define concepts that are applicable to many parts of the guideline model. For
example, a medical concept is part of the RIM, the data model, and of supplemental material.

Temporal constructs are part of the RIM and of iterations.

38

May 4, 2004 39 GLIF3.5

4. Specifying decisions

4.1 Different types of decision steps
Decision steps, shown in Figure 31, represent decision points where a choice has to be made

among competitive, mutually exclusive alternatives (decision options). In automatic decisions, if
the criteria specified in the decision option are met, then the control should flow to the step
specified in that decision option. If there is no match, then the control flows to a default step

indicated by the attribute default_option_when_automatic.

Guideline_Step

Decision Step Decision Option
iteration_info:lteration_Specification -destination:Guideline_Step
-triggering_svents Triggering_Event] -condition_value:Decision_Candition
-exeeptions: Guideline_Exception] -strenath_of_recommendation:Strength_Of_Evidence_Or_F
-duration_constraintRange_Of_Duration option 0.7 | -name:string
-options:Decision_Option[-display_name:String
-decision_detail:Mestable
-automatic_decision:Boolean
-default_option_when_automatic:Guideline_Step_Package.Gu condition value

(Guideline_Model_Entity

Z% l% Decision Condition

..Macro Decision Step Utility Choice Step
-decision diagram url:string Q \
A Ltility Choice Ruleln Choice Weigl Choice
T -hiode:Btring -rule_in:Criterian(-criterion_and_weightiWeighted <
: -strict_rule_in:Criterion]]

-tule_out Criterion]
-strict_rule_outCriterion]] Guideline_Exprassion

GL Expression Package.Criterion

choice is of class UtilityChDicellI

0. [

1 Criterion
-weightint

Figure 31. The decision step hierarchy

4.1.1 Modeling deterministic one-of decisions (Previously known as Case Steps)

Decision_Step can be used as a means to represent conditional selection of one and only one path
from among several alternatives. This replaces GLIF2’s conditional step class, which used a
Boolean model. The Boolean model made it cumbersome and error-prone to represent criteria
that do not have a true-or-false result (e.g., selection based on the condition “patient's age
category” has several options: neonate, infant, toddler, child, adolescence, adult, elderly).

To represent deterministic one-of, a decision step is linked to several decision options. The
strict_rule_in attribute of each decision option is used to specify a decision condition that could
be computed automatically. If a strict _rule in evaluates to true, then the control flows to the
guideline step that is specified by that decision option’s destination.

The decision options’ criteria in a case should be mutually exclusive. However, the responsibility
of ensuring mutual exclusiveness is left to the guideline author. If these criteria are not mutually

39

May 4, 2004 40 GLIF3.5

exclusive, and more than one decision option criteria are met, then only one decision option is
chosen, arbitrarily. The GLIF specification does not define which of the options is selected in

case of more than decision criterion being true.

Optionl

strict_rule_inl destinationd, | Guideline Stepl

|

If strict_rule_in_i
then destination_i is chosen

Option2
strict_rule_in2

Destination2 \

A\ 4

Guideline Step2 Guideline Step3

Figure 32. The way in which deterministic one-of decisions are modeled in GLIF3

Note that the decision options are not guideline steps. When using Protégé as an authoring tool
for GLIF3, decision options are not graphically depicted as flowchart nodes. Instead, they are

depicted as connectors, as shown in Figure 33.

Decision Step

optionl.strict_rule_inl Guideline Stepl

option_i..condition_value i

option2.stricf_rule_in2 If strict rule in i

then destination_i is chosen

Guideline Step2

S

Guideline Step3

Figure 33. The way decision steps are graphically displayed by the Protégé GLIF authoring tool

40

May 4, 2004 41 GLIF3.5

An example of a deterministic decision step is shown in Figure 35 through Figure 38.

Mo hreast
mass found <patient state step>

<decision step>

Baseline
Age?
. — =31 Mammogram
<action step>
== 3|:| p
Patient
Reassurance

[4]

4 [

| ¥

Figure 34. Deterministic one-of decision step used in the Breast Mass Workup algorithm. Only part of the

algorithm is shown.

@Hecent MI. PTCA, CABG? [Decision_Step]

HName Strength OF Evidence VIS] =
Recent Ml, FTCA, CABRGT

teration Info WIC| +| —
[¥] Automatic Decision
Options V(C| +| —| Didactics VS| +| -
T yes
<L no
Default Option When Automatic | V| C | +|| —| DecisionDetail| V|| C| +| —
<@> Conditions present that could cause Angina?

Figure 35. An example of a decision step. This is one of the case steps shown in Figure 19.

41

May 4, 2004

{{E no [Decizion_Option]

Display Hame

na

Hame

no Ml, CABG, PTCA

Condition Value VIC| +| —

& no MI, CABG, PTCA

Destination VIiC +| -

<> Conditions presentthat could cause A

42

GLIF3.5

Figure 36. The details of the “no” option shown in Figure 35. When the expression “RecentMPC?”, shown in
Figure 35 evaluates to the condition value “No Recent MPC” control flows to the destination step “Conditions

present that could cause angina?”

42

May 4, 2004 43

{{E DecisonExamples_INSTAMCE_00079 [instance of Algorithm]

Name First Step VIiC| +| -

BF contraol

Steps

<action step>
Presence <deterministic decision step>

ision step>

Rulein: presence of diahetes and no renal

Fule in: ciency

presence of BFContraol
enal to el omy
imgufficiency 1305845
BF Control
to belowy
128174

RegularBP Control to

of -
i corroreidl * helow 140090
co-rothidity? .
I Ful ~“firesence of cardiovascular disease
insufficiency or diabetes)
Level of
BF?

1 BB

Figure 37. Deterministic decision step used in the BP Control algorithm

GLIF3.5

43

May 4, 2004 44 GLIF3.5

:{E DecizonExamples_INSTAMCE_D0001 [instance of Algornithm]

Hame First Step Ba

|Ameri|:an Heart Azsociation's prevention of Bacterial Endocarditiz Guideline. {F'rl:ud

Steps

<deterministic decision step>

Frophylaxis?

hle to take oral meds and not allergic to Penicillin
Give

amuoxcillin

<action step>
unahle to take oral meds and not allergic to Penic

allergic ta PCM and ahblet
edications

Give [M or
Clindarmycin

[
isi or -
<decision step> e
Cefazolin 2
Give Give
Clindamycin Cefazolin

[4]

e

| ¥

Figure 38. Deterministic decision step used in the prevention of bacterial endocarditis algorithm

4.1.2 Modeling non-deterministic decision Steps

Non-deterministic one-of decision steps represent a decision between guideline steps for which
the guideline does not provide deterministic selection criteria. There are many reasons for using
this construct such as when a decision cannot be represented unambiguously. The different
decision options in a non-deterministic decision step are not necessarily mutually exclusive. The
options.condition_value of a non-deterministic decision step must belong to Decision_Condition
or its subclasses. Examples of non-deterministic decision steps are shown in Figure 37 through
Figure 38.

44

May 4, 2004 45 GLIF3.5

Ranking the decision options depends on the class of Decision_Condition. Each option contains
a degree of preference that may be modeled differently for the different types of
Decision_Conditions. The degree of preference will determine how the Decision_Conditions
will be ranked. This will assist the user in choosing among the different options. All the options
in one non-deterministic decision step must belong the same class so they can be ranked
consistently.

41.2.1 Utility_Choice_Step

Utility Choice step is a subclass of the Decision Step. It represents a choice step that uses the
Utility theory in deciding among several options. It contains a pointer to the decision algorithm
used to evaluate the choices. This may either be a decision analysis tree or an influence diagram.

The utility choice step has the same attributes as the decision step, but adds the decision_diagram
attribute. The options.condition_value of the utility choice step must be of class UtilityChoice.

41.2.2 Choices
There are 3 subclasses of the Choice class: Ruleln Choice, Weighted Choice, and Utility Choice.

Rule In Choice

RulelnChoices specify rule-in, rule-out, strict-rule-in and strict-rule-out criteria for each decision
option. These criteria help the user choose one of the decision options.

The strict-rule-in criteria rank a choice as the best among several options. For example, when
there are competing diagnoses for a disease, a pathognomonic condition would be a strict-rule-in
for the disease.

A strict rule out is analogous to an absolute contraindication. For example, “allergy to penicillin”
is a strict rule out for giving penicillin.

A strict-rule-out takes precedence over strict-rule-in when ranking options. If an option contains
both a strict-rule-in criterion and a strict-rule-out criterion, and both evaluate to true, then that
option should be the last choice.

Strict-rule-ins take precedence over rule-ins and rule-outs. The ranking of rule-ins and rule-outs
is left to the user who may use his or her clinical judgment or may develop their own ranking
schemes.

All the strict-rule-outs of the same choice are related to each other using the OR relationship
(i.e., if there are 2 rule-ins, A and B, then they are equivalent to a single rule-in stating A OR B).
Similarly, all the strict-rule-ins of the same choice are related to each other using the OR
relationship

Examples of Ruleln Choices are shown in Figure 37, Figure 39, and Figure 40.

45

May 4, 2004 46 GLIF3.5

Choice Step
(Pre-ESRD evaluation)

Option 1 \ Option 2
(transplant) (hemodialysis/HD)
\ 4
Option 3
(Peritoneal dialysis/PD)
Rulelns

1. Patients who prefer PD or will not go to HD

2. Patients who cannot tolerate HD

3. Patients who prefer HD but have no assistants for HD, or an
assistant cannot be trained for home HD

RuleOuts

Fresh intra-abdominal foreign bodies (e.g. VP shunt)

Peritoneal leaks

Body size limitations

Intolerance to PD volumes necessary to achieve adequate PD dose
Inflammatory or ischemic bowel disease

Abdominal wall or skin infection

Morbid obesity

Severe malnutrition

Frequent episodes of diverticulitis

CoN~WNE

StrictRuleOuts

1. Documented loss of peritoneal function or extensive abdominal
adhesions that limit dialysate flow

2. Inthe absence of a suitable assistant, a patient incapable physically
or mentally of performing PD

3. Presence of uncorrectable mechanical defects that prevent effective
PD or increase the risk of infection.

Figure 39. RulelnChoice in pre end-stage renal disease (ESRD) Evaluation. The strict-rule-in for transplant

would be availability of a donor kidney. That automatically puts it as first choice.[23]

46

May 4, 2004 47 GLIF3.5

Choice Step
(Antimicrobials for
primary prophylaxis for
dental. resniratorv tract

Optionl
Amoxicillin
(preferred)

Option 3
Cephalexin

Option 5
Azithromycin
or

Clarithromycin

StrictRuleln:
True

Option 6

: Option 4
Option 2 ption Erythromycin

StrictRuleQut: Clindamycin Cefadroxil
anaphylactic reaction to

penicillin

Figure 40. RuleInChoice in the decision on of antimicrobials for primary prophylaxis for dental, respiratory

tract or esophageal procedures.[24]

41.2.3 Weighted Choice

WeightedChoices contain an array of criteria, each associated with a weight. The weighted
criteria for each of the options will determine how an option will be ranked amongst the choices
presented to a user at run-time. The sum of the weights for each criterion in a choice has to
equal 1. The higher the value of a choice (from 0 to 1), the higher its rank. If a criterion is false
or unknown, it is counted as O or assessed as a criteria not being met.

4.1.2.4 Utility Choice
A utility choice represents a node in a decision analysis tree or an influence diagram.

4.2 Specifying decision criteria
Criteria are expressed using three_valued_criterion_expressions that are written in a superset of

Arden Syntax, called GLIF_Arden (see Section 3.8). The data items that are referenced by the
criteria are specified in the medical ontology of GLIF (see Section 2.4).

Suppose that we want to specify the decision criterion: Age > 30 year
The criterion is specified as: (now — Date_Of_Birth) > 30 year
Where:
1. now is a special time operator that returns the current time
2. Date_Of Birth is a primitive data value retrieved from an EPR
3. “30year” is a literal data item that matches the type of Date_Of Birth

47

May 4, 2004 48 GLIF3.5

4.3Defining patient data

In the above example, PNDS is a term that is defined in the medical ontology. We will show
how this patient data item is defined in the 3-layered ontology.

:{E Examples? 00295 [instance of Three_¥Yalued_Criterion]

HName Let Expressions VIC] +| -

Age = 30 vears

Specification

(now - date_of_hirthy = 30 year

Encoding Language

GLIF_Arden b

Didactic

Get Data ltems VIS +| -
“I> et date_of_hirth

Figure 41. The criterion “Age > 30 year”

Figure 41 shows how the criterion “Age > 30 year” is modeled in GLIF. The primitive data
value date_of birth is retrieved from the EMR using the Get Data Action specification.
Date_of _birth will be defined by the Get_Data action specification to retrieve the data from the
Date_Of Birth patient Data_Item.

Data items are used when specifying decision criteria, as shown in Section 4.2. Patient data
items can have quite complex structures depending on the RIM. This can introduce significant
complexity into expression evaluation. For instance, “Latest cough” is difficult to compute
because cough, as an observation, has more than one associated time stamps. Many attributes in
a RIM such as USAM serve for documentation and retrieval purposes only. So we intend to
encourage users to use the Get_Data_Action action specification (see Section 5.3.4) to retrieve
appropriates data value(s), assign them to primitive data items and only employ primitive data in
computation.

48

May 4, 2004 49 GLIF3.5

Another example is given in Figure 42 and Figure 43, where the criterion
PostNasal_Drip is_in Symptom

is specified using the literal data item PostNasal_Drip and the variable data item Symptom.

@Euampleﬂ_ﬂﬂﬁl? [instance of Literal_Data_ltem]

Hame Data Model Class Id
PHDOS Ohseration
Data Model Source Id
- ER
conce vy 0+ [- oot
Concept Name
Fost Masal Drip Data Value VIC]*+| -
Concept Id
CO0327a81

Concept Source

LIMLS

4 [E

al | »

Figure 42. The PostNasal_Drip literal data item

E:E Examples2_00299 [instance of Yariable_Data_ltem] [_ O]
Hame Owner
Syrmptom
Concept {1 valu{aﬂ| ﬂ| j| j|ﬂ| Data Model Class Id
Concept Name Ohseration
Syrnptam Data Model Source Id
Concept Id USAM
0683368 Data Value VIC| +| -

Concept Source

LIMLS

1 [EE

A |»

Figure 43. The Symptom variable data item

May 4, 2004 50 GLIF3.5

5. Describing actions

5.1Specifying the action and parameters
See section 3.4(Action Steps).

5.2Iterative actions (and decisions)

The Iteration_Specification class specifies information regarding the loop structure of the
iteration. Only action steps and decision steps may be iterated. The action- and decision steps
that reference the Iteration_Specification, are iterated until the abort condition or stopping
condition criteria hold. The iterations are carried out at a certain frequency, which is expressed
by an Iteration_Expression. The Iteration_Expression class is shown in Figure 44.

Different types of iteration expressions are possible. These are: frequency expression, every
expression, times expression, and discrete temporal expression table.

50

May 4, 2004 o1 GLIF3.5

Guideline_Model_Entity
lteration Specification
-abort_condition:Criterion
-stopping_condition:Criterion
-iteration_frequency:iteration_Expression

n.x
frequency

0.1

Uideline_Model_Entity
Jteration ExXpression

/”\

Discrete Temporal Expression Table

Frequency Expression -frequency _listAtomic_Fregqueancy(]
-for_:Duration
D"*
1.1
Atomic Frequency
Every Expression \ Times Expression -frequency:Frequency_Expression
-repeat_everyFuzzy_Duration -repeat_times:integer -until:Criterion
-reset_iteration_points:Boalean -per:Duration
!
Guideline_hodel_Entity
Fuzzy Duration
-label:string after_uncertainty Guideline_Model_Entity Range Of Duration
-duration:Duration Duration -rin_duration:Duration
-before_uncertaintyDuration 0.7 before_uncertainty 0.1 |-numberfoat -rriax_duration:Duration
-after_uncertainty:Duration n* duration -time_unitTime_Literal
Time Literal Lt
-millisecond:int
- -second:int
|_nterface -minuteint
nmez.‘one -hour:int
M -dayint
M -manth:int
M -yearint
M -time_zone Time_Zone
+MTint -plus_hourint

Figure 44. The Iteration Expression class hierarchy
There are two types of Frequency_Expressions: Times_Expression and Every_Expression. Both

of them define the frequency at which an iteration should occur and its duration. The duration is
specified by the for attribute of the Frequency_Expression class.

51

May 4, 2004 52 GLIF3.5

A times expression specifies that something should occur a specified number of times (the
repeat_times attribute) within a specified interval (the per attribute) (e.g., “3 times a day;”). At
execution time, this class should be mapped, or refined to a tight temporal expression.

An every expression specifies that something should occur every fuzzy duration. A fuzzy
duration is a duration that has an associated before and after uncertainty period. Any time point
within (duration-before_uncertainty, duration+after_uncertainty) is considered to be within the
limits of the fuzzy duration. For example, for a duration of 4 hours with a before uncertainty of
Y hour and an after uncertainty of 1 hour, represents a fuzzy duration interval of 3% - 5. The
fuzzy duration also has offsets. These are used in conjunction with the every expression (see
below). Any time point within (duration-before_offset, duration+after_offset) is considered to
be within the limits of the fuzzy duration, but requires resetting of the iteration points used by
every expressions. Examples of fuzzy duration expressions are: “4 hours with window -30
minutes, + 1 hour;” and “ 5 hours with offset -1 hour, + 1 hour;”

An every expression specifies whether or not the iteration points should be reset in cases where
the iteration did not occur exactly on the fuzzy duration’s duration, but within the interval
(duration-before_uncertainty, duration+after_uncertainty). This is specified by the
reset_iteration_points Boolean. Taking birth control pills is an example of constant iteration
points, which should not be reset. A birth control pill needs to be taken every 24h, but there are
before and after windows of 12h. So even if the pill was not taken at the regular time, it can still
be taken up to 12h later. If the patient remembered missing a dose more than 12 hours after the
normal duration of the every expression, then the dose should be skipped. Iteration points are
not reset. So if the pill was first taken at 9pm it should be continued at approximately that time,
every 24 h. The every expression for this example is shown in part (a) of Figure 45.

@ (Every_Expression) (Fuzzy Duration)

name:Take pill every 24h repeat_every | label: 24h +/-12h
reset_iteration_points: false = > duration: 24 h
before_uncertainty: 12h
after_uncertainty: 12h

(b) (Every Expression) (Fuzzy Duration)
name:Take pill every 5 repeat_every | label: 5 +/-1h
reset_iteration_points: true B > duration: 5 h

before_uncertainty: 1h

after_uncertainty: 1h

Figure 45. Example of Every expressions

Aspirin represents an example of resetting iteration points. Aspirin should be taken every 4-6
hours. Using an every_expression, the fuzzy duration is specified to have duration of 5 h with
before and after uncertainty of 1 h. So if the first aspirin tablet was taken at 7am, the following
doses are tentatively scheduled for noon, 5pm, 10 pm, etc. Suppose the second pill was taken at 1
pm. Then the patient should be able to take the next dose at 7pm. This will be enabled if after the

52

May 4, 2004 53 GLIF3.5

second pill was taken, the iteration points were reset to 7 am, 1 pm, 6 pm, 11 pm, etc. The every
expression for this example is shown in part (b) of Figure 45.

A discrete temporal expression table is another type of Iteration_Expression. It specifies a list of
pairs of frequencies and durations, called atomic frequencies. For example, see patient every 5
weeks for 5 months, then, every 2 weeks for 1 month, and then every week for 1 month. The
order of rows is important. The rows are to be executed from the top of the table to its bottom.

Executing an action at irregular intervals can be either modeled as iteration or not. For example,
a visit schedule that says: “visit every 5 weeks for 5 months and then every 2 weeks for X
months” may be modeled as an iterative action, but an immunization schedule that requires
giving an immunization at times t; t+ 1 month; t+2 months would better be modeled as an action
(Immunization) that is not iterative, but instead is event triggered. The triggering events would
be temporal: 1 month after the first dose; 2 months after the first dose. Modeling the
immunization schedule as iteration is possible but is not elegant. It can be done by specifying
that a shot should be given every 1 month for 1 month, then every 2 months for 2 months, etc.

Another consideration involves maximum doses. Some medications need to be taken at 1-2 pills
every 4-5 hours, but no more than 8 pills within 24 hours. The iteration is still every 4-5 hours,
but the dose per iteration is dependent on previous doses and may be equal to zero.

Examples of an iteration specification are shown below.

1. lterate 3 times a day for 10 days
Iteration_specification.frequency == 3 times a day for 10 days (Times Expression)

2. lterate 3 times a day for 30 times
Iteration_Specification.frequency == 3 times a day (Times Expression)
Iteration_Specification.stopping_condition == 30 times

2. lterate (see the doctor) every 5 weeks until week 31 after conception, then every 2 weeks

for 4 weeks, then every week until week 40.

Iteration_Specification.abort_condition == end of pregnancy

Iteration_Specification.stopping_condition == 40 weeks after conception

Iteration_Specification.frequency == every 5 weeks until 31 weeks after conception;
every 2 weeks until 35 weeks after conception;
every 1 week until 40 weeks after conception;
(Discrete temporal Expression Table)

5.3Action Specifications

The action specification model includes two types of actions: (1) guideline-flow-relevant actions,
such as calling a sub-guideline, or computing values for data; and (2) clinically relevant actions,

53

May 4, 2004 o4 GLIF3.5

such as making recommendations. Clinically relevant actions reference the medical ontology for
representations of clinical concepts such as prescriptions, laboratory test orders, or referrals.

Guideline_Step
Guideline Step Package.Action Step

tasksAction_Specification]

-iteration_info:lteration_Specification

-triggering_events: Triggering_Event]

-exceptions:Guideline_Exception]]

-duration_constraintDuration_Interval

-next_step:Guideline_Step_Package. Guideline_Step

-strength_of_recommendation:Strength_0Of_Evidence_Or_Recommendation

L

i
Guideline_mModel_Entity
Action Specification
description:String
-intention:String

Fy

4 <Q\l|~.r|e|:|i|:a||3.r Oriented Action Specificatio

T n
Macro Package.Macro Action Programming Oriented Action Specification medical taskLiteral Data lem
-macro:Macro - =
2 ,f”"\'? ZF\ \\
Get Data Object Action Get k ledge Action
Sl.mguideli.ne Action Generate Event Action -variahble_name:String -input_relationships:knowledge_ltem]
action_detail:Nestable —ventEvent -variable_name:String
-data_source_type:Data_Source_Type

Assignment Action \l/
expression:Guideline_Expression z}‘

-primitive_data_item_name:String GET Data For GEL Action interface
-aftribute_to_he_assigned:String LBl SMce Type
-primary time: String M"
GET OO Data Action -data_item: Data_Item +EMR:String

-expression:Guideline_Expression

Figure 46. The action specification package

All action specification objects specify the details of a clinical action. The Action Specification

class is abstract. Its subclasses are programming oriented action specifications and medically
oriented action specifications.

5.3.1 Subguideline Action

This is a programming-oriented action specification, that contains the details of a high-level
action in the form of a (sub)guideline or a macro.

5.3.2 Assignment Action

This is a programming-oriented action specification. The Assignment_Action class is used to

create/instantiate a primitive data item. This data item is assigned the value resulting from the
evaluation of the expression.

54

May 4, 2004 55 GLIF3.5

5.3.3 Generate Event Action
This is a programming oriented action specification. The Generate_Event_Action class is used

to create an event, such as “a data item was written to the EPR”.

5.3.4 Get Data Object Action
This is a programming oriented action specification. It is used to explicitly obtain the value of a

data item from the EMR or from a user and store it in a variable.

5.3.5 Get Data For GEL Action
GLIF3’s Get_Data_For_GEL_Action retrieves patient data from the EMR as HL7 RIM objects

and transforms them to query result data types. It allows a mapping to be specified from GLIF3’s
default data model, the HL7 RIM, to GEL’s data model. A guideline author can use
Get_Data_For_GEL_Action to specify that an attribute of a complex RIM class is the source of
data values for the query result, and that values of another attribute serve as the primary time in
the query result. Thus, the query result is a list of value and primary time pairs similar to Arden’s
query result data type. However, the value attribute in GEL’s query result holds a simple or a
complex GEL type. Get _Data For_ GEL_Action specifies which data item from the EMR will
serve as the source of data, and which attribute will be selected from the data item. In this way,
specific attributes of the data item can serve as the source of the data, rather than the entire data
item. For example, Get_Data_Action can retrieve all instances of Medication data items that
refer to ACE Inhibitor treatments (Figure 47). It can assign the value of their data value attribute,
which is a RIM Medication object (Figure 48), to the query result’s “value” attribute, and assign
the end time of each Medication treatment (critical_time.high) to the “primary time” attribute of
the query result elements.

(Instance of Get_Data_For_GEL_Action)

data_item: ACEI_Item
attribute_to_be_assigned: data_value
variable_name: ACEI

primary_time: data_value.critical_time.high

(Instance of Query Result)

value: (Medication instance) | value: (Medication instance) ..
primary_time: 2002-01-08 primary_time: 1999-03-02

Figure 47. The Get_Data_Action and its query result that holds ACEI Medication objects data values and

their primary times. In this example, the latest query result element has the primary_time 2002-01-08.

55

May 4, 2004 56 GLIF3.5

(Instance of Variable_Data_Item)
{name: ACEI_ltem
concept: {(instance of Concept)
concept_name: ACEl,
concept_id: C0003015;
concept_source: UMLS}
data_model_class_id: Medication
data_model_source_id: HL7-RIM
data_value: {(instance of Medication)
service_cd: ACEI concept;
mood_cd: event;
critical_time: {low: null;
high: null;}...} }

Figure 48. A variable data item that defines ACE Inhibitor treatment. Attribute names are on the left,
followed by their values. Complex values are in curly braces. The ACEI data specify the appropriate UMLS
code and HL7 RIM class (Medication). The figure shows two attributes of Medication. Other attributes

include dosage_quantity, rate_quantity, and route_code.

5.3.6 Get_OO_Data_Action

GLIF3’s Get_OO_Data_Action retrieves patient data from the EMR. The expression that
specifies a query that gathers data from the ER is specified in the GELLO expression language
(See Section 3.8)

5.3.7 Medically Oriented Action

The Medically_Oriented_Action class is used to define an action that refers to a medical term.
This class is used to represent a typical guideline recommendation.

@ Example_D ataModel 00000 [instance of Literal_Data_Item)

Name Data Value (1 values) me =¥

peRay | | senice ca E@EE |Id

Concept Id <Ir Chest¥-Ray
|co202783 | | Mood ca Method Cd v[e]+] -
|Drder =

Concept Source Id
LS | crifical Time E@BB Severity Certainty

@ {nowy, end_of_aguideling) | | |

|Observatinn | Aty Time V@E -

|
Data Model Source Id Recording Time W @E =
|USAM | Body Site Cd W lam ~ =]

Data Model Class Id

Status Cs Confidentiality Cd

Figure 49. A medically oriented action specification that orders a chest X-ray

56

May 4, 2004 S7 GLIF3.5

6. Patient States

A Patient_State_Step is a guideline step (a node in the flowchart) that is used for two purposes.
One purpose is to serve as a label that describes a patient state that is achieved by previous steps.
This way, a guideline may be viewed as a state transition graph, where states are scenarios, or
patient states, and transitions between these states are the networks of guideline steps (excluding
patient state steps) that occur between two patient state steps. The other purpose of a patient state
step is an entry point to the guideline (e.g., patient came back to the clinic at clinical state A).

A patient state step has a criterion that describes the state of the patient who is at that patient
state. If there is a criterion that refers to a generalization (e.g., “state is not well”) it also applies
to specializations of that class (e.g., “state is fever”). The hierarchy of concepts is defined in the
medical ontology, as shown in Figure 3.

A patient state step is followed by a guideline step.
An example of a Patient_State_Step is given in Figure 51 and Figure 52.

Patient_State Step

"“name: String

A%didactics: Supplemental_Material_List[]

Alabel: String

A%trength_of evidenc:Strenght_Of Evidence Or_Recommendation
Apatient_state_description: Criterion

A%next_step: Guideline_Step

“° new_encounter: Boolean

Atriggering_events: Trigerring_Event[]

Figure 50. The Patient State Step class. The superscript A, and C indicate the level of specification that the
attribute belongs to, while o indicates an optional attribute value.

When a patient arrives at a clinic, his current state is compared to the last patient state that was
recorded for him. If he is not at that state, then the patient state steps that represent new
encounters are searched. These can be determined either by an implementation-level attribute
called "new_encounter"” of type Boolean, which characterizes a patient state step or by looking at
patient state steps whose next-step is triggered by an event of type “new patient encounter”.

It is important to acknowledge the fact that a patient might not follow the guideline precisely,
and that he/she may also be treated outside the regular clinic.

57

May 4, 2004

Hame

on ane anti-hypertensive drug

Lahel

on ane anti-hypertensive drug

Patient State Description ¥ || C || + | -

<@> Count (antibyvperensive_Agent) == 1

Hext Step VIC| +| =

58

@Euampleﬂ_ﬂﬂﬂi&ﬁ [instance of Patient_5State_Step]

Strength OF Bvidence

Didactics

v

Figure 51. An example of a patient state step

GLIF3.5

58

May 4, 2004 59

@DecisunExamples_l]l]l]m [instance of Algorithm]

Hypertension algarithm

Steps

<patient state step>

Mot an any
anti-hypertensive
drug

<branch step>

<decision step>
0-drug
Caonsultation therapy
Artions choice

<action step>

oal BF goal not
eing eing met
met
Cantinue Add anather
Life-style anti-hyperensive
change drug
areater greater <synchronization
than ar thanor gtens
egual to 2 equal to 2
Qn one
anti-byperntensive
drug

|4

Figure 52. A hypertension guideline showing transitions between two patient state steps

GLIF3.5

59

May 4, 2004 60 GLIF3.5

{{E DecisonExamples_00040 [instan...

Name Firstes

Consultation_Actions

Steps

Encourage
life-style
change

Check
presence
of FB
result

Check presence
of creatinine test
result

Check
creatinine

[4]

| ¥

Figure 53. The consultation actions shown in this figure are executed in parallel. This is a zoom-in view of the
consultation action shown in Figure 52.

7. Parallel paths in a guideline

7.1Branching to multiple paths
See Section 3.6 (Branch Steps).

7.2Synchronizing from multiple paths
See Section 3.7 (Synchronization Steps).

8. Dealing with complex guidelines

The Nestable class is a superclass of Guideline and Macro. It is an abstract class. Both Guideline
and Macro are guideline model entities that can be nested. Nesting allows grouping of parts of a
guideline into modular units (subguidelines or macros). This enables partitioning the guideline
parts into manageable sized units that can be more easily comprehended. These modular units
can also be reused by other guidelines.

The details of action and decision steps of a guideline can be shown in a different guideline that
serves as a subguideline of the first guideline. The subguidelines can recursively contain other
subguidelines to specify even more details of actions or decisions.

60

May 4, 2004 61 GLIF3.5

Macros can be used to represent patterns of domain level concepts in a single encapsulated
object. This object can be then be mapped to a guideline object containing underlying GLIF steps
(i.e., not containing macros). In this way, macros enable declarative specification of a procedural
pattern that is realized by a set of primitive GLIF steps.

Nesting is very useful for managing the complexity of guidelines. Nesting enables looking at a
guideline from a top-level view and then zooming into/out of some of its parts. Nesting is also
useful in representing a guideline in the context of other guidelines. Since nesting allows
grouping of parts of a guideline into a single unit, this is a mechanism that can allow model
extensibility and reuse of part of a guideline (defining macros), or adaptation of a guideline to a
specific institution by replacing specifications for parts of a guideline (i.e., replacing a goal with
a procedure).

8.1Nesting decisions

Decision are nested by specifying a subguideline in the decision_detail attribute of a decision
step. This subguideline is executed before the decision criterion for that step is evaluated. The
subguideline would modify or create new variables and assign them values. The use of these
variables in the decision criteria makes the decision nested.

The connector represent the non-srnoker -
. . . . and
Decision_Option.rule-in: s]
Patient_Cough_ACEI_Smoking_state == ugh not B
Cough_not_due_to_smoking_and_not_ACEI e to ACE =
nar
moking

Cough not due

g to smoking
caused by—*and non-ACE|
ACEl or

Cough not
smokin \\A

<decisi ton> due to
ecision ste ACE| and

on-smoker

Caough
fone
<patient_state step>

Figure 54. A top-level view of a nested decision step (ACEI=ACE Inhibitor).
A zoom-into view of the Decision Step shows:

61

May 4, 2004 62 GLIF3.5

stop
smoking . <branch_step>
for 4 -
weeks
Smoker?
\2 assion
nan-smoker
—_—
and not an
n ACEI?

\&5
Stop ACE

<deterministic
fior 4

decision_step> weeks
<action_step>

Assign
| . Cough
gonge

<synch_step>

Assian caudgh Assign not

not due to ACI due ta
and not smaoking and
smoking not ACEI

Data Item Name: Patient_Cough_ACEI_Smoking_State

Expression: Cough_not_due_to_smoking_and_not_ACEI

Figure 55. This is the detailed view of the decision step, shown in the previous figure. This subguideline
determines state of the patient in terms of his cough, smoking, and ACEI use. The leaf steps of this
subguideline assign the cough_smoking ACElI value to a new data item named
Patient_Cough_ACEI_Smoking_State using the Assignment_Action. The data item
Patient_Cough_ACEI_Smoking_State that is created by the subguideline is used by the main decision step in
its rule-in criterion. The value is used by the decision option’s destination to select the next step of the outer
guideline.

8.2Nesting actions

Action Steps are nested by including a Subguideline_Action type of task in the step. The
Subguideline_Action task has a subguideline attribute that contains the nested subguideline.

Figure 56 shows an example of nesting an action step, for complexity management purposes,
while Figure 57 shows an example of nesting which is used for adjusting a local procedure.

62

May 4, 2004 63 GLIF3.5

Radiotherapy {Action_Step)

name: Radiotherapy
Radiotherapy subguideline iAction_Spec) didactics:

hd default_viewer:
L action_detail:

Suhguidelinei

Radiotherapy pratacal (Subguideling) Pretreatment lakwork (Action Stepﬂ
L

first step

L

hext stepl

Patient ready? (Case_Step

name: Pretreatment lakbwork
CASE_EXpressionexp
operatar =

destinations:

T

»
Schedule_Radiotherapy (Action_Stem
L

name:Schedule_Radiotherapy
didactics:
hext_step:

next step l

[rradiate (Action_Step)
5

hame:lrradiate
didactics:
default_viewer:
next_step:

Figure 56. Nesting of an action step, for complexity management purposes.

63

May 4, 2004 64 GLIF3.5

Turn Patient every 2h {Action_Step)

Ininstitutional implementation(&ction. Spec) narme: Turn Patient
ask didactics:
L default_viewer:
action_detail:

iteration_specification: every 2 hours

Suhguideline

Was patient turned within the past two hours? (Case Step)
- it

name: Was patient turned within the past two hours?
didactics: null

case_expressionturned?

operatar =

default_destination: null

iteration_infa: null

Decision_detail: null

destinations:
LN

destinatinnl

(Case_Destination)
-

case_walue: false
destination:

destinatinnl
Send ReminderfAction_Stepm
L

name: Send Reminder
didactics:

Figure 57. Nesting of an action step, for adjusting a local procedure.

9. RDF-based Syntax for GLIF

The Resource Description Framework (RDF) is an infrastructure that enables the encoding,
exchange and reuse of structured metadata. It is developed under the auspices of W3C. RDF has
an explicit model for expressing object semantics (objects, attributes). RDF uses XML
(eXtensible Markup Language) as a common syntax for the exchange and processing of.
Metadata.

The data structure (metadata) definitions of GLIF’s object model are given by an RDF Schema.
RDF can be used as a format to encode instances that conform to the RDF Schema. Figure 58(a)

64

May 4, 2004 65 GLIF3.5

shows a class diagram that describes part of the GLIF model for the guideline class. Part (b) of
the figure shows the corresponding RDF schema. Part (c) of the figure shows an example of an
rdf guideline instance that conforms to the RDF schema shown in (b).

65

May 4, 2004

Guideline_Model_Entity

(a)

: String

A

Guideline

66 GLIF3.5

<s:Class rdf:about="&a;Guideline">
(b) <s:subClassOf rdf:resource="&a;Guideline_Model_ Entity"/>

</s:Class>

<s:Property rdf:about="&a; ">
<s:domain rdf:resource="&a;Guideline_Model_Entity"/>
<s:range rdf:resource="&s;Literal"/

</s:Property>

(c) <a:Guideline rdf:about="&a;Cough_INSTANCE_00068">
<a: >Management of Chronic Cough in Immunocompetent Adults</a:name>
</a:Guideline>Figure 58. A Partial RDF schema for the GLIF model

10. Acknowledgements

We would like to thanks very much the following people who were very helpful in giving us comments
about this document and about the GLIF language that led us to changing this document and some of the

constructs of the GLFI language.

Dipl.-Ing. Florian Rissner,
Technical University of limenau,
Germany,

florian.rissner@gmx.net

Carol Broverman PhD
Director, Clinical Informatics
Fast Track Systems

San Mateo, CA

cbroverman@fast-track.com

Micael Kahn MD, PhD

Vice President Medical Informatics
Fast Track Systems

San Mateo, CA 94403

mkahn@fast-track.com

66

mailto:florian.rissner@gmx.net
mailto:cbroverman@fast-track.com

May 4, 2004

A. Appendix A

1. Macros

67 GLIF3.5

A macro is a special class with attributes that define information needed to instantiate a set of
underlying GLIF steps. Macros can be used to represent patterns of domain-level concepts.
Macro steps benefit authoring, visual understanding, and execution of guidelines.

The Macro class is an abstract class. A new type of macro is defined by creating a subclass of the
macro class. The attributes of this subclass are then mapped to attributes of the underlying
patterns of GLIF steps to generate the representation of the macro in GLIF steps. The schema
attribute of the Macro class describes the mapping of the Macro to GLIF steps. A schema
language is still being developed.

Guideline Model Entity
-name:String
Ll
[‘}\ Guideling_Step
..Decision Step Package.Decision Step
~Package Action Specification iteration_info:lteration_Specification

description:String
-intention: String

-triggering_events Triggering_Event]]
-exceptions: Guideline_Exception

F

-duration_constraintRange_0Of_Duration

i

This step can contain only one task and its type
musthe Macro_Action or its subclasses.

Arden Macro

-options:Decision_Option(
-decision_detail:Mestahle

T

Macro Decision Step

Guideline Package Nestable Einn, de

[

The decision_detail
attribute ofthe
Macro Decision Step
must be of type Macro.

i

Macro Action

Macro Schema
Macro

-macro:iacro

-macro_class_name:String
-schermaMacro_Scherna

Py

= -glif_pattern:Ohject

/A

evoke Event]]
condition:Criterion
action:Action_Specification
-next_step:Guideline_Step

Get Conditional Data Macro

Recommendations Based On Risk Macro

-condition:Criterion

-data_to_get.Get_Data_Action]] |

-condition: Criterion
0+ -recamrmendation:Medically_Oriented_Action_Specification

L

Risk Assessment Macro

Conditional Data List Macro

-calculation_data:Caonditional_Data_List Macro
-risk_calculation:Risk_Calculation_Macro
-recommendations:Recommendations_Based_On_Risk_Macro

-demographics:Get_Conditional_Data_Macrof]

Figure 59. The Macro package

67

May 4, 2004

68

GLIF3.5

An Arden Macro, like an Arden MLM, has four sub-slots: evoke, condition, and action, that
correspond to the evoke, logic and action slots of the knowledge slot of an Arden MLM, and the
next_step attribute that links it to the next guideline step. An example of an Arden macro and its

expansion

IS

=action_step id="*""=
=action_detail=

=GUideline=

=algorithrm=

=gteps=

=decision_step=

=avents

=rmacro_attribute name="evoke"=
=mmacro_attrihute_constraints=
=ftmacro_attribute_constraints=
=fmacro_attribute=

=/event=

=candition=

=tmacro_attribute name="condition"=
=fmacro_attribute=

=/condition=

=aptions=

=case_destination=
=case_value=true=icase_value=
=destination==action_step re="¢"V=<fdastination=
=ftase_destination=

=foptions=

=fdecision_step=

=action_step id="«"=
=rmacro_attribute name="action"=
=fmacro_attributes=
=faction_step=

=fsleps=

=falgorithime=

=/GUideline=

=faction_detail=

=next_step=

=fhext_step=

=faction step=

[

In

shown
Ardan Macro Albumin_Fesult_Awailable: Event
evoke
evoke
condition alburnin_is_high: Expression
actioh condition J
next_step L
action
L lert_MD: Message_Action
- herna a 1
|
Macro_schema L

see_note: glif_pattern
Arden_MLM: macro_class_name

Figure 60 and Figure 61.

68

May 4, 2004

=action_step id="*""=
=action_detail=

=GUideline=

=algorithrm=

=gteps=

=decision_step=

=avents

=rmacro_attribute name="evoke"=
=mmacro_attrihute_constraints=
=ftmacro_attribute_constraints=
=fmacro_attribute=

=/event=

=candition=

=tmacro_attribute name="condition"=
=fmacro_attribute=

=/condition=

=aptions=

=case_destination=
=case_value=true=icase_value=
=destination==action_step re="¢"V=<fdastination=
=ftase_destination=

=foptions=

=fdecision_step=

=action_step id="«"=
=rmacro_attribute name="action"=
=fmacro_attributes=
=faction_step=

=fsleps=

=falgorithime=

=/GUideline=

=faction_detail=

=next_step=

=fhext_step=

=faction step=

[

69

Arden Macro

GLIF3.5

Albumin_Fesult_Awailable: Event

evoke
evoke
condition alburnin_is_high: Expression
actioh condition
next_step L
action
L lert_MD: Message_Action
- herna a 1
|
Macro_schema L

see_note: glif_pattern
Arden_MLM: macro_class_name

Figure 60. An example of an MLM Macro used to alert a physician if the patient has a high albumin value

69

May 4, 2004

mLM: Action_Step

subguideline

70

Subguideline Action
-

Test Result_Awailahle: Event

GLIF3.5

Subguideline

first_step

Case Step

Lserum_alb|_|min_reault_pnsted_tn_EMR

Event attribute of macrnll|

Alhumin_is_high: Criterion
event candition ™
[
decision option Condition attribute nfmacrnl_\l

if_true: case_destination
-

(
L

next_step

»
Action_Ste

task

Action attribute of macrnlll

MO Message: Message_Action

"Alhuminis too high. Do something!

70

May 4, 2004 71 GLIF3.5

Figure 61. An expansion of the MLM macro from

Albumin_Result_Available: Event

[Arden Macro

=action_step id="*"= avoke

=action_detail=

=Guideline= evoke

=algorithm:= condition alhumin_is_high: Expression
=steps= action condition J

=decision_step=

Iy next_step L

=macro_attribute name="evoke"= action

=macro_attribute_constraints=

=/macro_attribute_constraints= lert_MD: Message Action
-

) ZFhema
=fmacro_attributes= |

=/event= ‘
=candition=

=mmacro_attribute name="condition"=
=fmacro_attributes= - —
=/condition=

=aptionss=

=case_destination=
=case_value=true=icase_value=
=destination==action_step ref="¢"/=<idastination=
=fcase_destination=

=foptions=

=fdecision_step=

=action_step id="«"=

=tmacro_attribute name="action"=
=fmacro_attributes=

=faction_step=

=/steps=

=falgorithims=

=/Guideline=

=faction_detail=

=next_step=

=/hext_step=

=faction step=

Macro_schema

see_note: glif_pattern
Arden_MLM: macro_class_name

Figure 60 into primitive GLIF steps.

Risk Assessment Macro

A Risk Assessment Macro has three parts, or “steps”:

1. Collecting patient data - Data that is needed for calculating risk is collected through
the Conditional_Data_List Macro. The data may be obtained conditionally based on
values of previously collected data. In the example shown in Figure 62, demographics
data is obtained for all patients. Menstrual history is obtained only if the condition
adult female is true. The Conditional_Data_List_Macrois modeled using an ordered
list of Get_Conditional _Data macros. This macro contains a condition and a list of
patient data items that must be obtained.

71

May 4, 2004 72 GLIF3.5

2. Computing risk - The risk calculations are performed through the Risk Calculation
Macro. This macro has to be defined. It would contain definitions of variables that are
to be created and the calculation of those variables through Assignment_Actions.

3. Recommendations based on risk - Recommendations based on computed risk and
individual risk factors are provided through the
Recommendation_Based On_Risk_Macro. Recommendations are provided only if an
associated condition is true. In the example shown in Figure 63, the
Exercise_recommendation is provided only to high-risk persons. Thus, the
Recommendations_Macro is structurally similar to the Get_Conditional_data_macro.

Figure 62 and Figure 63 show an example of a risk assessment macro and its expansion.

Risk Assessment Macro Conditional Data List Macrg Demographics: Get_Conditional_Data_Macra condition & Criterion

o . 4@
_1 |
e Get_data
data to get

Gender: Get data

risk calculation

Wenstrual_history: Get_Conditional_Data_Macro

L condition __adult ferale: Critetion

Rigk_Calculation_Macro data to get
data to get

—
Menarche_age: Get_data
— Pre?nan0§ hlstu? { i

To be defined ™

recommendations

/
f

High_Risk: Condition

risk=70%

candition
Exercise_Reco: Conditional _Recommendation_Macro Exercise: Message Action
[recammendation
Recommendations_Based_On_Risk_hacro recummendatiuq |
recommendatiunl recommendation

Hormone_Supplements: Conditional_Recommendation_Macro Low Risk Condition

Encourage: Conditional_Recommendation_Macro condition
L [risk = 30%
recommendationl recummendatlonl L Mmessage

Past-menopausal_waman: Criterion eep it up: Message Action
r—‘% Frescribe Estrogen: Preseription_Action %

Figure 62. Risk Assessment Macro based on age, gender, menstrual history, and pregnancy history. This risk
assessment macro recommends exercise for risk > 70%, maintaining life style for risk < 30%, and estrogen
treatment for post menopausal women.

72

May 4, 2004 73 GLIF3.5

Get_patient_data: Action_Step Subguideline_Action Get demographics: Action_Step
task |

first step

SubguidelineI / next step#
Subguideline Branch_Ste

e E

Corpute risk Macro Ste is_adult_worman: Decision_Ste
__ _|Tobe defined i |

true*
Get_menstrual_histo
next_step
Recommendations: Action_Step

| task Subguideline_Action

| Do all recommendations: Branch_Step

subguidelineI first step

Sub?uideline

branch hranch branch

* is_pregnant. Decision_Step

low_rigk: Decision_Ste

high_risk: Decision_Step

Keep it up: Message_Action Take iron_supplement: Prescription_Action

Exercise: Message_Action
| |

Figure 63. An expansion of the Risk Assessment Macro shown in Figure 62 into its primitive GLIF steps.

2. Views of a guideline

For each guideline default viewers may be specified. Since different users may be interested in
different parts of a large, complex guideline, differential display capability is supported. This
capability is provided through the use of filters that collapse segments of the guideline into a
default view of the guideline customized to a given user, situation, etc. Default viewers are
specified using a View_Specification.

73

May 4, 2004 74 GLIF3.5

Guideline_Model_Entity
View Specification
-filter:Filter_expression

A capability to provide multiple views of the same guideline was added in GLIF3. Since
different users may be interested in different parts of a large, complex guideline, differential
display capability is supported. This capability is provided through the use of filters that collapse
segments of the guideline into a default view of the guideline customized to a given user,
situation, etc.

Views describe the amount of detail {i & level of nesting) displayed by default for each
of the subguidelines.

Subguideling 17
(Breast Cancer
creening Diagnosis

Eubguideline
(Breast Cancer
Diagnosis and
Staging)

Subguideline 3%
(Breast Cancer
SUrgery)

ubguideline 4
(Bresst Cancer
Radiation Therapy)

Figure 64. A breast cancer guideline viewed by a radiation oncologist

If a guideline consists of subguidelines, each of these subguidelines may be visualized as a
triangle, with one step at the highest level and multiple steps at the lowest level. That is, the
width of the triangle is proportional to the number of steps at that level of nesting. The top of the
triangle has less detail and therefore has a smaller number of steps. The bottom of the triangle
has more detail and therefore has a larger number of steps.

A given filter (e.g., MD_Radiation_Oncologist) will define the default level of nesting/Zoom-in
for each of the subguidelines. It will be up to the guideline author to define the subguidelines in
an appropriate way (e.g., to avoid too many steps per screen for a given viewer) and to define the
level of nesting required for each given subguideline. In the above example, suppose that a breast

74

May 4, 2004 75 GLIF3.5

cancer guideline has four subguidelines. A Radiation Oncologist looking at the guideline may
see, by default, relatively little detail about screening, diagnosis and surgery. He will see a great
deal of detail regarding radiation therapy, however. A surgeon looking at the same guideline may
see little detail on screening and diagnosis, a lot of detail on surgery and little detail on radiation
therapy.

The status quo of specialty bodies publishing guidelines may change as multi-specialty
organizations publish multi-specialty documents. Guidelines may become quite complex.
Much of medicine is multi-disciplinary in nature. The distinction between specialties is artificial.
For example, the distinction between cardiology and nursing is for the convenience of
practitioners. The patient suffering a myocardial infarction (heart attack) is likely to require care
from both a cardiologist and a nurse. The information needs of the cardiologist, however, are
very different from those of the nurse. The purpose of default views in GLIF should be to reveal
to the cardiologist only the relevant portions of the myocardial infarction guideline, which may
be different from that shown to the nurse.

Views are default filters through which we interact with the guideline. By definition, views do
not change guideline logic (e.g. if an RN should do something different from an MD, this should
be represented in the guideline logic, not in the view). Although we anticipate that the most
common use of views will be user and/or location, there may be other relevant filters (e.g.
situation such as routine vs. disaster). The view class is a guideline entity. Alternatively, the view
could have been modeled as an enumerated type attribute. The main purpose of this class is to
allow differential display in the simplest possible way.

The view specification was chosen to be at the level of guideline entities and not at the attribute
level. We may later choose to make attributes (and not entire guideline entities) visible or
invisible to some users.

The BNF notation for filter expressions:

term: filter_type = domain_ontology _filter_instance

filter_expression: term | expression binary_operator expression | unary_operator expression |
(expression)
binary_operator: OR | AND

unary_operator: NOT
filter_type: USER | LOCATION
domain_ontology _filter_instance: MD | RN | ...

An example of a view specification is shown in Figure 65 and Figure 66.

75

May 4, 2004 76 GLIF3.5

Biopsy (Guideling)] View Specification
default_viewer
— = »

filter:ISER = MD

ﬂrst_stepl

Biopsy (Action_Step)

Followup (Action_Step)

s

- next_step
name: Breast hiopsy |[———*®

didactics: J
action_detail:

action_detail
View _Specification

Incisional or Excisional Biopsy? (Guideling) default_viewear ‘]
| | # filter USER = MD_Surgeon |

L ‘J first_step

Incigional of Excisional Biopsy? (Choice_Step
x S

name: Incisional ar Excisional Biopsy?
didactics: null

candition: larg

operator. =

default_destination: null

iteration_info: null

Decision_detail: null

options:
aption
aptian
(Decision,_Option)] {Decision_Option)
condition_value: Incisional | — - — |
o condition_value: Excisional
destination: N
destination:
destination destinatinnl
Incisional_Biopsy (Action_Step) Excisional Biopsy (hetion Step)
{”3'””93 Incisional Breast hiopsy J narme: Excisional Breast biopsy
didactics: didactics:

Figure 65. Specifying views: a guideline might call for a breast biopsy. Lets say that all MDs want to see that
a breast biopsy is called for, however, surgeons want to know what kind of biopsy is needed, incisional or
excisional.

76

May 4, 2004

MD_Surgean viev_-t| ™,

MDD wiew name: Breast biopsy
didactics:

7

Biopsy (Action_Step)

action_detail:

GLIF3.5

Followup faction_Step

i

next_step

Incisional or Excisional Biopsy? (Choice Step

name: Incisional or Excisional Biopsy?
didactics: null

condition: larE

operatar, =

default_destination: null

iteration_infa: null

Decision_detail: null

options:

option

(Decision_Option)

t

condition_walue:lncisional J

destination:

dest

ination

Incisional_Biopsy idction_Step

t

name: Incisional Breast hiopsy J

didactics:

next_step

option

(Decigion_Option

condition_value:Excisional ‘
destination:

destinatinnl

Excigsional_Biopsy (Action_Step)

‘ name: Excisional Breast hiopsy
didactics:

next_step

Followup (Action_Step)

7

May 4, 2004 78 GLIF3.5

Figure 66. How different users view the guideline. This example shows how nesting deals with views. If the
viewer is an MD he sees the top-level view of the action step Biopsy. He can zoom into the action-detail
subguideline, to see that incisional or excisional biopsies can be performed. An MD_Surgeon will directly see
the zoomed-in view of biopsy directly, showing the decision that is made between incisional and excisional
biopsy.

3. Specifying events and exceptions

Guideline Modal Entity

-hame:String

2

Guideline Exception Event . . Triggering Event
-exception_eventEvent -event_type:Event Type -trigyering_eventEvent
—condition-Critetion -earliest_start_time Time_Literal
-next steﬁ'Guideline Step -latest_start_time Time_Literal
priotityinteger -priorityinteger
interface
Event T'ype

+end of previous step:String
+patient data availibility: String
+patient arrival:String
+ermporal:String

Figure 67. Events and Exceptions class diagram

Action- and decision steps have an attribute, called triggering_events, which specify the events
that trigger the start of the step, and the associated earliest and latest times after which the step
should be started. A step may contain several triggering events. Any one of the triggering events
that occur can trigger the step. If more than one of these triggering events occur at the same time,
then the highest priority event is chosen to trigger the step, as specified by the priority attribute
of the Triggering Event class. Different event types are defined: end of a previous guideline step,
patient arrival, patient data availability, and temporal events, such as a certain point of time has
arrived.

The links that connect the guideline steps of an algorithm (i.e., the “next step” attribute of action
steps, patient state steps and synchronization steps, the “default next step” of decision steps, the
“branches” of branch steps, and the “destination” of decision options) represent triggering events
of type “end of previous step” that trigger the guideline step that is adjacent to the arrowhead of
the link. There is no need to explicitly specify them as triggering events unless earliest or latest

78

May 4, 2004 79 GLIF3.5

start times should be specified. [What is the priority of “Next_Step” that is not explicitly
specified?]

If an action step has a start_time constraint, then it is applied to all of the action’s tasks.
Examples of events are shown in Figure 68.

Action and decision steps, as well as guidelines, have an attribute, called exceptions, which
specifies the exceptions that should be checked during the execution of the step. The exceptions
are of the class GLException. This class specifies the exception-event that should be checked for,
a (guarding) condition and a next step. If the exception event occurs and the condition holds,
then we terminate the step associated with the exception, and move on to the next step that is
defined by the exception.

Any of the exceptions that occur can stop the execution of the current step and pass control to
another step. [problem: Again, control can go outside branch and synchronization] In cases
where several exceptions are defined (each with its own next_step), their priorities are compared,
and the highest priority exception is chosen to trigger the step. This way, the control is passed to
the guideline step that is specified by the exception that has the highest priority.

An example of an exception is shown in Figure 69.

79

May 4, 2004 80

) (2)

hemoglobin_availahility (Event) 02:00:00 (Event)
event_name: hermodlobin event_name: 02:00:00
event_type: patient_data_availahility event_type: termparal

(3)

Action_Stept (Action_Step) Action_Step2 (Action_Step)

next_step [

Ltriggering_events:

triggering_eventi
Triggering_Event

earliest_start_time: 00:00:02
|atest_stant_time:00:00:05

triggering_event*
Action_Step1 _Ended (Event)

GLIF3.5

triggering_avent

Jrigoering_Event

earliest_start_time: 00:08:00
latest_start_time:infinity

1riggering_eventl
Action_Stepl Ended (Event)

event_name: Action_Stepi
event_type: end_of_previous_step

event_name: hemoglobin
event_type: patient_data_availahility

Figure 68. Examples of triggering_events. 1) hemoglobin data is available; 2) 2 am arrived; 3) Action Step2 is
invoked by one of two events: (a) at least 2 seconds and not more than 5 seconds after Action Stepl ended; (b)

at least 8 minutes after hemoglobin data is available.

80

May 4, 2004 81 GLIF3.5

Step? (Action_Step)

Radiation_Therapy (Action_Step) M&\ J

duration_constraint (2.5 month)

exception

anemia (Exception

\l Step3 (action_Step)
next_step ['

triggering_event. hemoglobin; patient_data_availability L ,J
condition: hemoalohin = 11

next_step:

Figure 69. An example of an exception. When radiation therapy is conducted, you check for the exception of
anemia (hemoglobin result with a value of < 11). If it occurs then you go to Step3. If it doesn't you finish

radiation therapy and go to step2.

81

May 4, 2004 82 GLIF3.5

B. Appendix B:

BNF for GEL: GLIF Expression Language

NON-TERMINALS

CompilationUnit ::= (StatementOrExpression (<EOL>)+)* <EOF>
StatementOrExpression ::= Assignment
|FunctionStatement
|LetStatement
[IfStatement
|ConcludeStatement
|Expression
Statement ::=Assignment
|FunctionStatement
|LetStatement
[IfStatement
|ConcludeStatement
Assignment ::= Id <ASSIGN> Expression <SEMICOLON>
LetStatement ::=<LET> Id <BE> StringConst <SEMICOLON>
FunctionStatement ::= <ID> "(" (ArgumentList)?)" <SEMICOLON>
IfStatement ::= IF> Expression <THEN> Statement (<ELSE> Statement)? <ENDIF> <SEMICOLON>
ConcludeStatement ::= <CONCLUDE> Expression <SEMICOLON>
Expression::= ConditionalExpression
ConditionalExpression ::= ListAppendExpression
ListAppendExpression ::= List <COMMA> Expression
| WhereExpression (<MERGE> WhereExpression)?
WhereExpression::= OrExpression (<WHERE> OrExpression)?
OrExpression ::=
Conditional AndExpression (<OR> Conditional AndExpression | <XOR> Conditional AndExpression)*
Conditional AndExpression ::= ComparisonExpression (<AND> ComparisonExpression)*
|<AT_LEAST> Number <OF> "(" ArgumentList)"
ComparisonExpression ::= ConcatExpression (<EQUAL> ConcatExpression | <NOTEQUAL> ConcatExpression |
<LT> ConcatExpression | <LEQUAL> ConcatExpression |
<GT> ConcatExpression | <GEQUAL> ConcatExpression | <IS_WITHIN> <SAME_DAY_AS>
ConcatExpression | <IS_WITHIN> <PAST>

ConcatExpression | <IS_WITHIN> ConcatExpression (<TO> ConcatExpression | <PRECEDING>
ConcatExpression | <FOLLOWING>

ConcatExpression | <SURROUNDING> ConcatExpression) | <IS_BEFORE> ConcatExpression |

<IS_AFTER> ConcatExpression | <IS_IN> ConcatExpression | <OCCURS_AT> ConcatExpression |
<OVERLAPS> ConcatExpression)*

ConcatExpression ::= AddExpression (<CONCAT> AddExpression)*

AddExpression::=

MultiplyExpression (<MINUS> MultiplyExpression | <PLUS> MultiplyExpression)*
MultiplyExpression ::= PowerExpression (<TIMES> PowerExpression | <DIVIDE> PowerExpression)*
PowerExpression ::= B4AfterExpression (<POWER> PowerExpression)*

82

May 4, 2004 83 GLIF3.5

B4AfterExpression ::= UnaryExpression (<BEFORE> UnaryExpression | <AFTER> UnaryExpression)*
UnaryExpression
::=UnaryMinus
|UnaryPlus
|[MinusDuration
|PlusDuration
|<NOT> UnaryExpression
|<FIRST> UnaryExpression
|<LAST> UnaryExpression
|<LATEST> UnaryExpression
|<EARLIEST> UnaryExpression
|[<ANY_OF> "(" ArgumentList)"
|[<ALL_OF>"(" ArgumentList ")"
|<IS_NULL> UnaryExpression
|<IS_BOOLEAN> UnaryExpression
|<IS_UNKNOWN> UnaryExpression
|<IS_NUMBER> UnaryExpression
|<IS_TIME> UnaryExpression
|<IS_DURATION> UnaryExpression
|<IS_STRING> UnaryExpression
|<IS_LIST> UnaryExpression
|<TIME_OF> UnaryExpression
[<EXTRACT_YEAR> UnaryExpression
|[<EXTRACT_MONTH> UnaryExpression
|[<EXTRACT_DAY> UnaryExpression
|[<EXTRACT_HOUR> UnaryExpression
|<EXTRACT_MINUTE> UnaryExpression
|<EXTRACT_SECOND> UnaryExpression
|[<EXTRACT_DATE> UnaryExpression
|Duration <AGO>
|Duration <FROM_NOW>
|PrimaryExpression
UnaryMinus ::="(" <MINUS> Number ")"
UnaryPlus ::="(" <PLUS> Number ")"
MinusDuration ::= "(" <MINUS> Duration ")"
PlusDuration ::= "(* <PLUS> Duration ")"
PrimaryExpression ::= Literal
|Function
[Id
|"(" Expression)"
| It
It :=<IT>
Id =<ID>("." <ID>)*
Duration ::= <NUMBER> (<YEAR> | <MONTH> | <WEEK> | <DAY> | <HOUR> | <MINUTE> |
<SECOND>)
Function
<ID>"(" (ArgumentList)?)"
ArgumentList
Expression ("," Expression)*
Interval ::=
<INTERVAL> ("("|"[") ((<NUMBER> | <MINUS_INFINITY>)"," (<NUMBER> |
<INFINITY>) ("™)"]"]") | UnaryMinus "," UnaryMinus ()" | "T") | UnaryMinus "," (
<NUMBER> | <INFINITY>) (")" | "T") |

May 4, 2004 84 GLIF3.5

(Date "," Date) (")"|"T") | (Duration | MinusDuration) "," (Duration | MinusDuration) ()" |
1))

ListElement ::=Literal |Id
List ;= ("{""}" | "{" ListElement (<COMMA> ListElement)* "}")
StringConst ::= <STRING>
Number ::= <NUMBER> Id

|[<NUMBER>
Date::=<DATE>

|[<NOwW>
ComplexType ::=

<STRUCT> <ID>"{"" (<EOL>)+ (<ID> ":=" Literal <SEMICOLON> (<EOL>)+)+ "}"

Literal ::= StringConst

|Duration

|[Number

| Date

|Interval

|List

|<TRUE>

|<FALSE>

|[<UNKNOWN>

| ComplexType

Tokens/Terminals

TOKEN : /* RESERVED WORDS */

< BE: "be" >
| < BOOLEAN: "boolean" >
| < DATEL: "date" >
| < DURATION: "duration" >
| < FALSE: "false" >
| < INFINITY: "infinity" >
| < MINUS_INFINITY: "-infinity" >
| <IT:"it">
| <LET: "let" >
| < NOW: "now" >
| < NULL: "null" >
| < RES_NUMBER: "number" >
| < RES_STRING: "string" >
| < TIME: "time" >
| < TRUE: "true" >
| < UNKNOWN: "unknown" >
| < STRUCT: "struct"” >

}
TOKEN : /* OPERATORS */
{

< COMMA: "," >

| < WHERE: "where" >

| <OR: (‘"] "or") >

| < XOR: ("*|" | "xor") >

| <AND: ("&" | "and") >

| <NOT: ("!"| "not") >

| < EQUAL: ("=="|"=") > // here to next comment -- same precedence

84

May 4, 2004 85

| <NOTEQUAL: ("1="]"<>")>
|<LT:"<">

| < LEQUAL: "<=">

|<GT:">">

| < GEQUAL: ">=">

| <IS_WITHIN: "is within" >

| <TO: "to" >

| < PRECEDING: "preceding" >

| < FOLLOWING: "following" >

| < SURROUNDING: "surrounding" >

| < PAST: "past" >

| <SAME_DAY_AS: "same day as" >

| < BEFORE: "before" >

| < AFTER: "after" >

| <1S_BEFORE: "is " < BEFORE > >

| <IS_AFTER: "is" < AFTER > >

| <IS_IN: ("is")? "in" >

| < OCCURS_AT: "occurs at" > // end same precedence
| <IS_NULL:"is" < NULL >>

| <IS_BOOLEAN: "is " < BOOLEAN > >

| <IS_UNKNOWN: "is " < UNKNOWN > >
| < IS_NUMBER: "is number" >

| <IS_TIME: "is" < TIME > >

| <IS_DURATION: "is " < DURATION > >
| <IS_STRING: "is string" >

| < IS_LIST: "is list" >

| < CONCAT: "||" | "concat" >
| <PLUS: "+" >

| < MINUS:; "-" >

| < TIMES: "*" >

| <DIVIDE: "/" >

| < POWER: ("**" | "A") >

| < AGO: "ago" >

| < FROM_NOW: "from now" >

| < YEAR: "years" | "year" >

| < MONTH: "months" | "month" >

| < WEEK: "weeks" | "week" >

| < DAY: "days" | "day" >

| < HOUR: "hours" | "hour" >

| < MINUTE: "minutes" | "minute" >

| < SECOND: "seconds" | "second" >

| <EXTRACT_YEAR: "extract " < YEAR > >

| < EXTRACT_MONTH: "extract " < MONTH > >
| <EXTRACT_DAY: "extract " < DAY >>

| < EXTRACT_HOUR: "extract " < HOUR > >

| < EXTRACT_MINUTE: "extract " < MINUTE > >
| < EXTRACT_SECOND: "extract " < SECOND > >
| < EXTRACT_DATE: "extract " < DATE1 > >

| < ANY_OF: "any of" >

| < ALL_OF: "all of" >

| < LAST: "last" >

| < FIRST: “first" >

| < INTERVAL: "interval™" >

| < AT_LEAST: "at least" >

| < OF: "of" >

| < EVERY: "every" >

GLIF3.5

85

May 4, 2004 86 GLIF3.5

| < OVERLAPS: "overlaps" >
| < LATEST: "latest" >

| < EARLIEST: "earliest" >

| < MERGE: "merge" >

| < TIME_OF: "time of" >

}

TOKEN : /* STATEMENTS */
{
<IF:"if" >
| < THEN: "then" >
| < ELSE: "else" >
| < ENDIF: "endif" >
| < CONCLUDE: "conclude" >
| < ASSIGN: ":=" >

}
TOKEN : /* IDENTIFIERS -- VARIABLES OR FUNCTION NAMES */

<ID: ["a"-"z" TAZ] ([t TATZ M0] | (At AT MO))R (L [A
([Ma"-"z" "ATZ M09] | ([Mar- AT MO R)+)*)R >
}

TOKEN : /* LITERALS */

< STRING: "\™'(=["\"™, "\, "\ T)*"\" >
| < NUMBER:
([0"-"9"])* . (["0"-"9"])+ (KEXPONENTS)? (["I","L","f" "F"])?
(["0"-"9"])+ <EXPONENT> (["I","L","f" "F"])?
(09]+ >
| < EXPONENT: ["¢","E"] (["+","-"])? (['0"-"9"])+ >
| < DATE: ["0"-"9"]["0"-"9"]["0"-"9"]["0"-"9"]"-"["0"-"9"]["0"-"9"]"-"["0"-"9"]["0"-"0"]
(TU[M0"-"9"]["0"-"9"] (": ["0"-"9"]["0"-"9"] (": " ["0"-"9] ["0"-"9] (", ([0"-"9"])+)2("Z"* | <DIFF>)?)2)?)?
>
| < DIFF; "+"["0"-"9"]["0"-"9"]""[0"-"9"]["0"-"9"]
[[0"-"9"][10"-"9"]": [0 "9 [*0"-"9"] >
}

Arden operators not supported by GEL

operator description Reason for not supporting
Sort time Sorts a list by primary time Could now be supported

Sort data Sorts a list by value Function sortAttribute ?

Exist(s) Checks if a list is not empty Could be supported as an

operator // isEmpty is a function

Count Returns the number of | Could be supported

86

May 4, 2004

87

GLIF3.5

elements in a list

minimum Returns the smallest wvalue | Function minimumAttribute ?
from items in a list of
identical types

maximum Returns the largest value from | Function maximumAittribute ?
items in a list of identical
types

Any Returns true if any of the items AnyAttribute?
in a list is true

All Returns true if all of the items | AllAttribute?
in a list are true

No returns true if all the items in | NoAttribute ?

a list are false

Element [index]

Returns the i-th element from

a list

Could be supported.

primary time is maintained

index latest

Could now be supported

index earliest

Could now be supported

index minimum

index maximum

reverse

Reverse order of elements in a

list, maintaining primary_time

Can be supported

minimum ... from

maximum from

first ... from

Could now be supported

last ... from

Could be supported

87

May 4, 2004

88

GLIF3.5

latest ... from

Could now be supported

earliest ... from

Could now be supported

Index minimum

from

index maximum

from

first .. from Could be supported

last .. from Could be supported
interval Returns the difference | Could now be supported

between the primary times of

succeeding items in a list

Formatted with

Will not be supported in GEL

Matches pattern

Will not be supported in GEL

SUM Will not be supported in GEL
AVERAGE Will not be supported in GEL
MEDIAN Will not be supported in GEL
Stddev Will not be supported in GEL
variance Will not be supported in GEL

Extract characters

Will not be supported in GEL

Seqto

generates a list of integers in

ascending order

Will not be supported in GEL

nearest... from

Will not be supported in GEL

index nearest ... from

Will not be supported in GEL

slope

Will not be supported in GEL

increase

list of differences between
successive items in a list

Will not be supported in GEL

88

May 4, 2004 89 GLIF3.5

decrease Will not be supported in GEL
% increase Will not be supported in GEL
% decrease Will not be supported in GEL
Numeric functions Will not be supported in GEL
synonyms Will not be supported in GEL

Operators that exist in GEL but not in Arden Syntax:

Unary: from now, is unknown

Binary: overlaps, xor, |*, is a, is-a, occur/occurs/occurred at, at least...of

from now

In Arden, you can refer to the time of an event/occurrence in the past by saying "two days ago".
But there is no similar syntax for referring to the time of a future event. "from now" was added
so that we can say "[do x] two days from now".

is unknown

Testing if something is null is not the same thing as testing if it is unknown. If | have a data item
that has not been initialized or assigned a value, it evaluates to null (e.g. if someone attempts to
use the value of a data item without first getting it from the patient record or a physician). This is
something that can be tested by Arden. If we want to note that | don't know whether the result of
a logical expression is true or false then we can assign the value "unknown™ to a variable
representing the results of the expression. This variable has a value ("unknown™) and is therefore
not null.

overlaps

“overlaps” is used for comparing intervals (time or other intervals). So for example, [3:5]
overlaps [2:4] would evaluate to true but [3:5) overlaps [5:9] would evaluate to false.

xor, |*

A xor B means ((A or B) and not (A and B))

|* is a synonym for exclusive or (xor).

at least...of

89

May 4, 2004 90 GLIF3.5

The “at least...of” operator allows us to express very basic existential/universal quantification
(i.e., "at least 1 of ... " is equivalent to "there exists ..." and "not (at least 1 of (not...))" is
equivalent to "for all ..."). It also allows expressing "k of n" criteria.

occur/occurs/occurred at

"occur/occurs/occurred at” is synonymous with Arden's "occur/occurs/occurred equal™ operator
and would be evaluated exactly the same way. It just seemed like it would be clearer to use it in
some situations.

GEL Functions used by GLIF

1. isEmpty that accepts a List as a parameter and returns TRUE if the list is empty (i.e., contains no
elements, or contains elements that are all empty) and FALSE otherwise.

2. selectAttribute accepts a complex type as an argument and selects an attribute out that complex
type.

3. selectAttributeFromList accepts a list of complex objects as an argument. It then returns a list

whose elements are the selected attribute of each element in the argument list. Unlike Select_Action, it
returns the value only, without maintaining timestamps.

4, containsValuesTimeStamped accepts two list arguments, where the second contains timestamps
(what Get_Data returns) and the first one does not (what Get_Knowledge returns). The function returns a
list of Booleans of length equal to the length of the second argument of the function. The Booleans take a
True value if in that position of the second argument of the function there exists a value that is contained
in the first argument of the function.

5. containsValues accepts two list arguments, both without timestamps. The function returns
a list of Booleans of length equal to the length of the second argument of the function. The
Booleans take a True value if in that position of the second argument of the function there exists
a value that is contained in the first argument of the function.

90

May 4, 2004 91 GLIF3.5

The GLIF Expression Lanquage (GEL)

Types supported by GEL are listed below and expressions involving constants of these types are provided as
examples of how to write valid expressions in GEL. A variable in GEL can be assigned a value of any one of the

types described below:

Number (real numbers)

String

Extended Boolean (true, false, unknown)
Absolute Date and Time

Duration

List

Numeric Interval
Duration Interval

Absolute Date and Time Interval

Number

Operations supported on numbers include comparisons, addition, subtraction, multiplication, division,

exponentiation, unary plus, and

unary minus. A number in GEL is a floating point/real number by default. Use of unsupported operators with

numerical values is an error (causes a type mismatch exception to be raised).

Unary operators:

+
Description: unary plus operator

Sample expression: (+3)

Returns: 3

Note: the parentheses are required
Description: unary minus operator
Sample expression: (-50)

Returns: -50

Note: the parentheses are required
is number

Description: checks type of argument and returns true if it is a number
Sample expression: is number 225

Returns: true

Sample expression: is number “hey”

Returns: false

Binary operators:

+

Description: addition operator
Sample expression: 2+3

Returns: 5

Description: subtraction operator

Sample expression:

2-3

91

May 4, 2004

Returns:

*

Description:

Sample expression:

Returns:

/
Description:

Sample expression:

Returns:

Sample expression:

Returns:

/\Or**

Description:

Sample expression:

Returns:

Sample expression:

Returns:

Sample expression:

Returns:

<
Description:

Sample expression:

Returns:

>
Description:

Sample expression:

Returns:

<=
Description:

Sample expression:

Returns:

>=
Description:

Sample expression:

Returns:

=Qor ==
Description:

Sample expression:

Returns:

Sample expression:

Returns:

I=or <>
Description:

Sample expression:

Returns:

Sample expression:

Returns:

92

-1

multiplication operator
50 * (-3)
-150

division operator
180/6

30

2217
3.142857142857143

exponentiation operator
275

32

3**6

729

2" (-4)

0.0625

less than operator
5<4
false

greater than operator
(-9) > (-18)
true

less than or equal to operator
51 <=51
true

greater than or equal to operator

200 >= 165
false

equality operator
20==12

false

1=1

true

inequality operator
20<>12

true

11=1

false

GLIF3.5

92

May 4, 2004

Ternary operators:

is within ... to ...
Description:
arguments

Sample expression:

Returns:

Sample expression:

Returns:

String

93 GLIF3.5

checks that first argument is in the inclusive range defined by the second and third

5iswithin4to 5
true

10 iswithin21t0 9
false

Operations supported on strings include concatenation and lexicographic comparisons. Use of unsupported
operators with string values is an error (causes a type mismatch exception to be raised).

Unary operators:

is string
Description:

Sample expression:

Returns:

Sample expression:

Returns:

Binary operators:
Il

Description:

Sample expression:

Returns:

<
Description:
argument)

Sample expression:

Returns:

Sample expression:

Returns:

>
Description:
argument)

Sample expression:

Returns:

<=
Description:
equals the 2nd)

Sample expression:

Returns:

>=
Description:
equals the 2nd)

Sample expression:

checks type of argument and returns true if it is a string
is string 225

false

is string “hey”

true

concatenation operator

“hello ” || “world”

“hello world”

less than operator (checks whether the 1st argument lexicographically precedes the 2nd
g < Sag”

true

ud" < ub”

false

greater than operator (checks whether the 1st argument lexicographically follows the 2nd
“yy77 > “ab77

true

less than or equal to operator (checks whether the 1st arg. lexicographically precedes or
“Cdn <= ucdn

true

greater than or equal to operator (checks whether the 1st arg. lexicographically follows or

“Zed" >= uzeen

93

May 4, 2004

Returns:

—Qor ==
Description:

Sample expression:

Returns:

I=or <>
Description:

Sample expression:

Returns:

Ternary operators:

is within ... to ...
Description:
arguments

Sample expression:

Returns:

Sample expression:

Returns:

94

false

equality operator
“Why”] “notﬂ
false

inequality operator
“Why” <> unot"
true

GLIF3.5

checks that first argument is in the inclusive range defined by the second and third

“aa” is within “a” to “b”
true

“c” is within “cc” to “ea”
false

4. Extended Boolean

Extended booleans in the expression language describe a 3-valued logic (true, false, and

unknown). Operations on extended booleans include logical ands, ors, xors, etc. Use of

unsupported operators with extended boolean values is an error (causes a type mismatch

exception to be raised).

Unary operators:

is boolean
Description:

Sample expression:

Returns:

Sample expression:

Returns:

is unknown

Sample expression:

Returns:

Sample expression:

Returns:

Sample expression:

checks type of argument and returns true if it is an extended boolean

is boolean unknown
true

is boolean 0

false

is unknown true
false

is unknown false
false

is unknown unknown

94

May 4, 2004

Returns:

notor !
Description:

Sample expression:

Returns:

Sample expression:

Returns:

Sample expression:

Returns:

any of
Description:

Sample expression:

Returns:

all of
Description:

Sample expression:

Returns:

Binary operators:

= Qor ==
Description:

Sample expression:

Returns:

I=or <>
Description:

Sample expression:

Returns:

and or &

Description:

Sample expression:

Returns:

Sample expression:

Returns:

Sample expression:

Returns:

Sample expression:

Returns:

Sample expression:

Returns:

Sample expression:

Returns:

or or |

95 GLIF3.5

true

logical not
not true
false

! false

true

not unknown
unknown

returns true if any of the logical expressions in its argument evaluates to true. Expects a
comma separated “list” of logical expressions as its argument.

any of (3>4, 67 < 99, true == true, true xor false)

Note, equivalent to: any of (false, true, true, true)

true

returns true if all of the logical expressions in its argument evaluate to true. Expects a
comma separated “list” of logical expressions as its argument.

all of (3>4, 67 < 99, true == true, true xor false)

Note, equivalent to: all of (false, true, true, true)

false

equality operator
true == unknown
false

inequality operator
false '= unknown
true

logical and

true and true

true

true and false
false

true and unknown
unknown

false & false

false

false & unknown
false

unknown & unknown
unknown

95

May 4, 2004

Description:

Sample expression:
Returns:
Sample expression:
Returns:
Sample expression:
Returns:
Sample expression:
Returns:
Sample expression:
Returns:
Sample expression:
Returns:

XOr or *|
Description:

Sample expression:
Returns:
Sample expression:
Returns:
Sample expression:
Returns:
Sample expression:
Returns:
Sample expression:
Returns:
Sample expression:
Returns:

96 GLIF3.5

logical or

true or true

true

true or false
true

true or unknown
true

false | false
false

false | unknown
unknown
unknown | unknown
unknown

exclusive or

true xor true
false

true xor false
true

true xor unknown
unknown

false *| false
false

false *| unknown
unknown
unknown *| unknown
unknown

The following binary operator expects a number followed by a comma-separated list of

logical expressions:

at least ... of ...
Description:

Sample expression:

Returns:
Sample expression:

Returns:

returns true if the number of logical expressions in its right argument that evaluate to true
equal or exceed its numeric argument.

at least 2 of (3>4, 67 < 99, true == true, true xor false)

Note, equivalent to: at least 2 of (false, true, true, true)

true

at least 5 of (3>4, 67 < 99, true == true, true xor false)

Note, equivalent to: at least 5 of (false, true, true, true)

false

Absolute Date and Time

Absolute dates and times and operations on them are defined with respect to a Gregorian

calendar. Operations on absolute dates and times include comparisons, subtraction, etc. Use of

96

May 4, 2004 97 GLIF3.5

unsupported operators with absolute date and time values is an error (causes a type mismatch
exception to be raised). An absolute date and time value that does not end in a Z for universal
coordinated time (UTC) or in a +/- hh:mm offset is assumed to be defined in local time. Note

that the expression now yields the current time on the particular system running an interpreter for

GEL.

Unary operators:
is time

Description:

Sample expression:

Returns:

Sample expression:

Returns:

Sample expression:

Returns:

Sample expression:

Returns:

extract date

Description:

and time in local time

Sample expression:

Returns:

Sample expression:

Returns:

extract year

Description:

Sample expression:

Returns:

extract month

checks type of argument and returns true if it is an absolute date and time

is time 1999-03-04T03:30:45.742-03:00
true

is time 2000-09-12

true

is time now

true

is time 23
false

extracts the date portion of the argument and returns it as an absolute date

extract date 1998-03-04T03:30:45.742+05:30
1998-03-04

extract date now (assuming now is 2000-10-03T17:59:10.240-04:00)
2000-10-03

extracts the year portion of an absolute date and time

extract year 1998-03-04T03:30:45.742-03:00
1998

97

May 4, 2004

Description:

Sample expression:

Returns:

extract day

Description:

Sample expression:

Returns:

extract hour

Description:

Sample expression:

Returns:

extract minute

Description:

time

Sample expression:

Returns:

extract second

Description:

time

Sample expression:

Returns:

Binary operators:

Description:

Sample expression:

Returns:

occurs at
Description:

Sample expression:

extracts the month portion of an absolute date and time

98

extract month 2001-11-05

11

GLIF3.5

extracts the day of the month from an absolute date and time

extract day 1950-12-25

25

extracts the hour of the day from an absolute date and time

extract hour 1960-10-01T03:04:30

3

extracts the number of minutes past the hour from an absolute date and

extract minute 1960-10-01T03:04:30

4

extracts the number of seconds past the hour from an absolute date and

extract second 1960-10-01T03:04:30

30

subtract one absolute date and time from another to produce a duration in seconds
2000-03-01T00:00:00 - 2000-02-01T00:00:00

2505600 seconds

checks that first argument and the second argument are equal
2000-03-10T05:04:03 occurs at 2000-03-10T12:55:43

98

May 4, 2004

Returns:
Sample expression:
Returns:
Sample expression:
Returns:

is within same day as

Description:
begins at midnight)
Sample expression:
Returns:

Sample expression:
Returns:

Sample expression:
Returns:

is before
Description:
Sample expression:
Returns:

is after
Description:
Sample expression:
Returns:

<
Description:

>
Description;

<=
Description:

>=
Description:

—0or==
Description:
Sample expression:
Returns:

I=or <>
Description:
Sample expression:
Returns:

99 GLIF3.5

false
2000-03-10T00:00:00 occurs at 2000-03-10T23:59:59
false
2000-03-10T05:04:03 occurs at 2000-03-10T05:04:03
true

checks that first argument and the second argument occur on the same day (a new day

2000-03-10T05:04:03 is within same day as 2000-03-10T12:55:43
true
2000-03-10T00:00:00 is within same day as 2000-03-10T23:59:59
true
2001-03-10T05:04:03 is within same day as 2000-03-10T12:55:43
false

determines whether one date occurs before another
2000-03-01T00:00:00 is before 2000-02-01T00:00:00
false

determines whether one date occurs before another
2000-03-01T00:00:00 is after 2000-02-01T00:00:00
true

less than operator (equivalent to is before)

greater than operator (equivalent to is after)

less than or equal to operator

greater than or equal to operator

equality operator (same as occurs at)
2010-03-01T00:00:00 == 2009-03-01T00:00:00
false

inequality operator
2010-03-01T00:00:00 !'=2009-03-01T00:00:00
true

The following binary operators expect a time followed by a duration:

is within past

99

May 4, 2004

Description:
argument to now
Sample expression:

04T19:04:18.650-04:00)

Returns:
Note:

as:

extract date now)
Sample expression:

04T19:04:18.650-04:00)

Returns:

Description:

Sample expression:
Returns:
Sample expression:
Returns:

100 GLIF3.5

checks that first argument is within the duration specified by now minus the second
2000-10-02T00:00:00 is within past 2 days (assuming that now is 2000-10-

false

this operator calculates past two 2 days as 48 hours before the present time

If two days prior is meant to start at midnight, other expressions could be substituted such
(2000-10-02T00:00:00 >= extract date (2 days ago)) and (2000-10-02T00:00:00 <=
2000-10-02T23:30:00 is within past 2 days (assuming that now is 2000-10-

true

Subtracts a duration from an absolute date and time

now — 3 days (assuming now is 2000-10-20T15:03:38.419-04:00)
2000-10-17T15:03:38.419-04:00

1998-01-31 - 28 days

1998-01-03T00:00:00-05:00

The following binary operators expect a time and a duration as arguments (in no particular

order):

+

Description:

Sample expression:
Returns:
Sample expression:
Returns:

Ternary operators:

... iswithin ... to ...
Description:
arguments

Sample expression:
Returns:

Adds a duration to an absolute date and time

1995-03-04 + 720 days
1997-02-21T00:00:00-05:00

5 hours + 1999-03-04T05:00:00
1999-03-04T10:00:00-05:00

checks that first argument is in the inclusive range defined by the second and third

2000-03-10T05:04:03 is within 2000-03-10T05:04:03 to 2000-05-10T05:04:03
true

100

May 4, 2004 101 GLIF3.5

The following ternary operators expect as arguments a time followed by a duration followed by a

time:

... Iswithin ... preceding ...

Description: checks that first argument is in the inclusive range defined by the third argument minus
the second argument to the third argument

Sample expression: 2000-03-10T05:04:03 is within 4 months preceding 2000-05-10T05:04:03

Returns: true

... iswithin ... following ...

Description: checks that first argument is in the inclusive range defined by the third argument to the
third argument plus the second argument

Sample expression: 2000-10-03T06:45:23 is within 5 days following 2000-10-01T00:55:46

Returns: true

... Iswithin ... surrounding ...

Description: checks that first argument is in the inclusive range defined by the third argument minus
the second argument to the third argument plus the second argument

Sample expression: 2000-09-29T17:20:01 is within 5 days surrounding 2000-10-01T00:55:46

Returns: true

Sample expression: 2000-10-05T00:00:00 is within 5 days surrounding 2000-10-01T00:55:46

Returns: true

Sample expression: 2000-10-06T19:05:40 is within 5 days surrounding 2000-10-01T00:55:46

Returns: false

Sample expression: (extract date 2000-10-06T19:05:40) is within 5 days surrounding (extract
date 2000-10-01T00:55:46)

Returns: true

5. Duration

Operations supported on durations include comparisons, addition, subtraction, multiplication, and division. Use of
unsupported operators with duration values is an error (causes a type mismatch exception to be raised. Note that
because of the fuzziness associated with certain durations (is 1 year 365 or 366 days? Is 1 month 28, 29, 30, or 31
days?), defaults are used for the number of days in a year (1 year = 365 days in our model), and the number of days
in a month (1 month = 31 days in our model). This means that certain operators would return results that differ from
the expected. For example the query 1 year == 12 months would return false because 365 days is not equal to 372
(12*31) days.

101

May 4, 2004

102 GLIF3.5

Ultimately, the best approach to evaluating such fuzzy or vague comparisons might be to apply appropriate methods
for handling uncertainty from the Artificial Intelligence literature on uncertainty, or to disallow precise calculations
from being made from such imprecise expressions.

5.1Unary Operators

is duration

Description:

Sample expression:
Returns:
Sample expression:
Returns:
Sample expression:

Returns:

Sample expression:
Returns:

ago

Description:

minus a duration

Sample expression:
Returns:

from now

Description:

plus a duration

Sample expression:
Returns:

+

Description:
Sample expression:
Returns:

Note:

Description:
Sample expression:

checks type of argument and returns true if it is a duration

is duration 3 years
true

is duration 5 months
true

is duration 20 hours

true

is duration 23
false

computes an absolute date and time equivalent to the current time (now)

2 days ago (assuming now is 2000-10-03T18:19:06.270-04:00)
2000-10-01T18:19:06.270-04:00

computes an absolute date and time equivalent to the current time (now)

2 days from now (assuming now is 2000-10-03T18:19:06.270-04:00)
2000-10-05T18:19:06.270-04:00

unary plus operator

(+3 days)

3 days

the parentheses are required

unary minus operator
(-50 hours)

102

May 4, 2004

Returns:
Note:

Binary operators:

+

Description:

Sample expression:

Returns:

Sample expression:

Returns:

Description:

Sample expression:

Returns:

Sample expression:

Returns:

*

Description:

Sample expression:

Returns:

Sample expression:

Returns:

/
Description:

Sample expression:

Returns:

Sample expression:

Returns:

<
Description:

Sample expression:

Returns:

Sample expression:

Returns:

103 GLIF3.5

-50 hours
the parentheses are required

Adds a duration to another duration (returns a duration in seconds unless

the duration specifiers are the same)

340 days + 91 days
431 days

6 hours + 42 days
3650400 seconds

Subtracts a duration from another duration (returns a duration in seconds

unless the duration specifiers are the same)

340 days - 91 days
249 days

6 hours - 25 seconds
21575 seconds

Multiplies a duration by a number to obtain another duration. Order of

arguments does not matter.

40 days * 3
120 days

5 * 30 seconds
150 seconds

Divides a duration by a number to obtain another duration or divides a
duration by a duration to obtain a number

40 days/ 2

20 days

2 minutes / 1 second
120

less than operator

40 days < 26 days
false

360 hours < 1 year
true

103

May 4, 2004

>
Description:
Sample expression:
Returns:

<=

Description:
Sample expression:
Returns:

Sample expression:
Returns:

>=
Description:

Sample expression:

Returns:

= Or ==
Description:
Sample expression:
Returns:

I=or <>
Description:
Sample expression:
Returns:

6. List

104

greater than operator
5 years > 12 months
true

less than or equal to operator
26 minutes <= 26 minutes
true

5 years <= 90 months

true

greater than or equal to operator
9 years >= 9 years
true

equality operator
3 days == 5 days
false

inequality operator
3 days =5 days
true

GLIF3.5

A list can contain any of the basic operators listed on the first page (including lists). Operations supported on lists

include membership checking, etc. Use of unsupported operators with lists is an error (causes a type mismatch
exception to be raised).

6.1Unary Operators

is list
Description:

Sample expression:
Returns:
Sample expression:
Returns:

first
Description:

checks type of argument and returns true if it is a list

is list {{1, 2}, 3, "hey", 1999-03-04}
true

is list 567

false

returns the first element in a list

104

May 4, 2004

Sample expression:

Returns:

Sample expression:

Returns:

last
Description:

Sample expression:

Returns:

Sample expression:

Returns:

105 GLIF3.5
first {2000-01-02T00:00:00, 24, 3, "hey", 1999-03-04}
2000-01-02T00:00:00

first {{1, 2}, 3, "hey", 1999-03-04}
{12}

returns the last element in a list

last {2000-01-02T00:00:00, 24, 3, "hey", 1999-03-04}
1999-03-04

last {{1, 2}, 3, "hey", "string"}
"string"

6.2Binary Operators

isin
Description:

argument

Sample expression:

Returns:

Sample expression:

Returns:

where

Description:

checks whether first argument occurs in the list represented by the second

2isin {50, 99, 2, 3, "hey", 1999-03-04}
true

55isin {50, 99, 2, 3, "hey", 1999-03-04}
false

the where operator is generally used to select values from a list, and has
the form: “exprl where expr2” (exprl is usually a list, but can also be a
value of any of the other basic types). The right argument to the where
operator (expr2) is expected to be a logical expression, a list of extended
boolean values, or true, false, or unknown. When the right argument is
true, the left argument is returned unchanged. When it is false or
unknown, an empty list is returned. When the right argument is a logical

expression, it may make use of the keyword “it” to refer to the individual

105

May 4, 2004

106

elements contained in the left hand side argument (when this is a list), or

to refer to the non-list value that is the left hand side argument. The valid

logical expressions that may appear on the right hand side of the where

are.

IS number it
IS string it

is boolean it
is unknown it
IS duration it
is time it

is list it

it < subexpr
subexpr < it
it <= subexpr
subexpr <= it
it > subexpr
subexpr > it
it >= subexpr
subexpr >= it
it == subexpr
subexpr == it
it 1= subexpr
subexpr 1= it

subexpr is in it

106

May 4, 2004

Sample expression:

Returns:

Sample expression:

Returns:

Sample expression:

Returns:

Sample expression:

Returns:

Sample expression:

Returns:

Sample expression:

Returns:

Sample expression:

Returns:

Sample expression:

Returns:

Sample expression:

Returns:

Sample expression:

Returns:

Sample expression:

Returns:

107 GLIF3.5

(where subexpr is a value of one of the basic types)

1 where true
1
1 where false

¢

1 where unknown

¢

1 where {true, false, unknown, true, true}
{1,1,1}

{4,5,6,7,8,9,10} where it < 7
{4,5, 6}

{4,5,6,7,8,9,10} where 7 < it
{8, 9, 10}

{4,5,6,7,8,9,10} where it<=7
{4,5,6, 7}

{4,5,6,7,8,9,10} where 7 <= it
{7, 8,9, 10}

{1,2,3,4,5,6,7} where it > 4
{5,6, 7}

{1,2,3,4,5,6,7} where 4 > it
{1,2,3}

{1,2,3,4,5,6,7} where it >= 4

{4,5,6, 7}

107

May 4, 2004

Sample expression:
Returns:
Sample expression:
Returns:
Sample expression:
Returns:

Sample expression:

where “CHF” is in it

Returns:

Sample expression:

Returns:
Sample expression:
Returns:
Sample expression:
Returns:
Sample expression:
Returns:
Sample expression:
Returns:

Sample expression:

string(it)
Returns:
Sample expression:

Returns:

108 GLIF3.5

{1,2,3,4,5,6,7} where 4 >= it
{1,2,3,4}

{1,2,3,4,5,6,7} where it ==
{4}

{1,2,3,4,5,6,7} where it =4
{1,2,3,5,6,7}

{{"CHF", "Mary", 1}, {"CHF", "Don", 2}, {"Angina", "Sam", 3}}

{{"CHF", "Mary", 1}, {"CHF", "Don", 2}}

{{1,2}, 2, 4 hours, "hey", 1999-10-23, 3 days, "why", "one"}

where 1 isin it

{{1.2}}

interval[2,3] where 2 is in it

interval[2,3]

interval[2,3] where 9 is in it

{

{{1,2}, 2, 3, 4, "hey", 1999-10-23, 3 days} where is number(it)
{2,3,4}

{"a", "b", 3 days, 4 hours} where is number(it)

{
{{1,2}, 2, 3, 4, "hey", 1999-10-23, 3 days, "why", "one"} where is

{"hey", "why", "one"}
{{1,2}, 2, 3, 4} where is string(it)
{3

108

May 4, 2004 109 GLIF3.5

Sample expression: {{1,2}, 2, 4 hours, "hey", 1999-10-23, 3 days, "why", "one"}

where is duration it
Returns: {4 hours, 3 days}

Sample expression: {{1,2}, 2, 4 hours, "hey", 1999-10-23, 3 days, "why", "one"}
where is time(it)

Returns: {1999-10-23}

Sample expression: {{1,2}, 2, 4 hours, "hey"”, 1999-10-23, 3 days, "why", "one"}

where is list(it)

Returns: {{1.2}}

Sample expression: {true, false, unknown, 1, 1999-03-04T05:00:00, "a"} where is
boolean(it)

Returns: {true, false, unknown}

Sample expression: {true, false, unknown, 1, 1999-03-04T05:00:00, "a"} where is

unknown(it)

Returns: {unknown}

Numeric Interval

Operations supported on numeric intervals include inclusion and overlap comparisons. The values appearing within
a numeric interval specification are real numbers with the exception of the special keywords —infinity and infinity.
An interval is specified by using the keyword “interval” followed by “[* (to represent an inclusive lower bound) or
“(* (to represent a non-inclusive lower bound), and two comma-separated numbers followed by “1“ (to represent an
inclusive upper bound) or “)* (to represent a non-inclusive upper bound). The number specified as the lower bound
must be less than or equal to the number specified as the upper bound. Use of unsupported operators with numerical
interval values is an error (causes a type mismatch exception to be raised).

6.3Binary Operators

isin

109

May 4, 2004

Description:

second argument

Sample expression:
Returns:
Sample expression:
Returns:
Sample expression:
Returns:
Sample expression:
Returns:

overlaps
Description:

Sample expression:

Returns:

Sample expression:

Returns:

Sample expression:

Returns:

Duration Interval

110 GLIF3.5

checks whether first argument occurs in the interval represented by the

lisin interval((-1), 5)

true

(-10) is in interval((-50), (-2))
true

5 isin interval(5, 29]

false

5isin interval[5, 29]

true

checks whether two numeric intervals overlap

interval[5,29) overlaps interval[26, 900]
true

interval(1, 50) overlaps interval(1, 50)

true

interval[3,5) overlaps interval(5, 99]

false

Operations supported on duration intervals include inclusion and overlap comparisons. The values appearing within
a duration interval specification are durations. An interval is specified by using the keyword “interval” followed by
“[* (to represent an inclusive lower bound) or “(“ (to represent a non-inclusive lower bound), and two comma-
separated durations followed by “]* (to represent an inclusive upper bound) or “)“ (to represent a non-inclusive
upper bound). The duration specified as the lower bound must be less than or equal to the duration specified as the
upper bound. Use of unsupported operators with duration interval values is an error (causes a type mismatch

exception to be raised).

6.4Binary Operators

isin
Description:

second argument

checks whether first argument occurs in the interval represented by the

110

May 4, 2004 111 GLIF3.5

Sample expression: 1 day is in interval((-1 day), 5 days)

Returns: true

Sample expression: (-10 years) is in interval((-50 years), (-2 years))
Returns: true

Sample expression: 5 hours is in interval(5 hours, 29 days]

Returns: false

Sample expression: 5 hours is in interval[5 hours, 29 days]

Returns: true

overlaps

Description: checks whether two duration intervals overlap

Sample expression: interval[5 minutes, 29 minutes) overlaps interval[26 minutes, 900 minutes]

Returns: true

Sample expression: interval(1 month, 50 months) overlaps interval(1 month, 50 months)

Returns: true

Sample expression: interval[3 seconds, 5 minutes) overlaps interval(5 minutes, 99 hours]
Returns: false

Absolute Date and Time Interval

Operations supported on absolute date and time intervals include inclusion and overlap comparisons. The values
appearing within an absolute date and time interval specification are absolute dates and times. An interval is
specified by using the keyword “interval” followed by “[* (to represent an inclusive lower bound) or “(* (to
represent a non-inclusive lower bound), and two comma-separated absolute date and time values followed by “]*
(to represent an inclusive upper bound) or “)* (to represent a non-inclusive upper bound). The absolute date and
time specified as the lower bound must occur before or equal the absolute date and time specified as the upper
bound. Use of unsupported operators with absolute date and time interval values is an error (causes a type mismatch
exception to be raised).

6.5Binary Operators

isin
Description: checks whether first argument occurs in the interval represented by the

second argument

Sample expression: 1999-03-04 is in interval(1998-10-12, 2000-02-05T05:00:00)
overlaps
Description: checks whether two absolute date and time intervals overlap

111

May 4, 2004 112 GLIF3.5

Sample expression: interval(1998-10-12, 2000-02-05T05:00:00) overlaps interval(1998-10-12,
2000-02-05T05:00:00)

Returns: true

112

May 4, 2004 113 GLIF3.5

/. REFERENCES

.10

A1

12

13

14

15

.16

Object Management Group. The Common Object Request Broker: Architecture and
Specification; 1999. Report No.: OMG Document Number 91.12.1.

Bernstam E, Ash N, Peleg M, Tu S, Boxwala AA, Mork P, et al. Guideline classification
to assist modeling, authoring, implementation and retrieval. In: Proc AMIA Symp.; 2000
November 2000; 2000. p. 66-70.

Advisory Committee on Immunization Practices A. Prevention and Control of Influenza.
Morbidity and Mortality Weekly Report 2000;49(RR03):1-38.

Irwin RS, Boulet LS, Cloutier MM, Gold PM, Ing AJ, O'byrne P, et al. Managing Cough
as a Defense Mechanism and as a Symptom, A Consensus Panel Report of the American
College of Chest Physicians. Chest 1998;114(2):133S-181S.

American College of Cardiology/American Heart Association/American College of
Physicians-American Society of Internal Medicine. Guidelines for the Management of
Patients with chronic Stable Angina. J Am Col Cardiol 1999;33:2092-

2197 .http://www.acc.org/clinical/quidelines/june99/index.html.

ACP-ASIM. Screening for Thyroid Disease. Ann Int Med 1998;129:141-143.

AHCPR. Acute Low Back Problems in Adults, Clinical Practice Guideline Number 14:
AHCPR Publication No. 95-0642; 1994. Report No.: 95-0642.

AHCPR. Heart Failure: Evaluation and Care of Patients With Left-Ventricular Systolic
Dysfunction, Clinical Practice Guideline Number 11: AHCPR Publication No. 94-0612;
1994. Report No.: 94-0612.

ACP-ASIM. Acute Major Depression and Dysthymia. Ann Intern Med 2000;132:738-
742.

Bartlett JG, Breiman RF, Mandell LA, File TM. Community-Acquired Pneumonia in
Adults: Guidelines for Management. Clinical Infectious Diseases 1998;26:811-838.
National Institute of Health. The Sixth Report of the Joint National Committee on
Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: National
Institute of Health; 1997 November. Report No.: 98-4080.

Snow V, Weiss K, Wall EM, Mottur-Pilson C, for the American Academy of Family
Physicians and the American College of Physicians-American Society of Internal
Medicine. Pharmacological Management of Acute Attacks of Migraine Headache:
Clinical Practice Guideline. accepted for publication (pending revisions) by Annals of
Internal Medicine 2001.

Peleg M, Boxwala AA, Tu S, Greenes RA, Shortliffe EH, Patel VL. Handling
Expressiveness and Comprehensibility Requirements in GLIF3. In: MedInfo 2001; 2001;
2001. p. 241-245.

Lindberg C. The Unified Medical Language System (UMLS) of the National Library of
Medicine. J Am Med Rec Assoc 1990;61(5):40-42.

Schadow G, Russler DC, Mead CN, McDonald CJ. Integrating Medical Information and
Knowledge in the HL7 RIM. In: Proc. AMIA Annual Symposium 2000; 2000; 2000. p.
764-768.

Ogunyemi O. The Guideline Expression Language (GEL) User’s Guide. Technical
Report. Boston, MA: Brigham and Women's Hospital; 2000. Report No.: DSG-TR-2000-
001.

113

http://www.acc.org/clinical/guidelines/june99/index.html

May 4, 2004 114 GLIF3.5

A7 E 1460 Standard Specification for Defining And Sharing Modular Health Knowledge
Bases (Arden Syntax for Medical Logic Modules). ASTM Standards v 14.01.
Philadelphia: American Society for Testing and Materials; 1992.

.18 Peleg M, Ogunyemi O, Tu SW, Boxwala AA, Zeng Q, Greenes RA, et al. Using features
of Arden syntax with object-oriented medical data models for guideline modeling. Proc
AMIA Symp 2001:523-
7.http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Cit
ation&list_uids=11825243.

19 Ogunyemi O, Zeng Q, Boxwala AA. BNF and built-in classes for object-oriented
guideline expression language (GELLO). Technical Report. Boston, MA: Brigham and
Women's Hospital; 2001. Report No.: DSG-TR-2001-018.

20 Warmer J, Kleppe A. The Object Constraint Language: Getting Your Models Ready for
MDA. 2nd ed. Boston, MA: Addison-Wesley Pub Co; 2003.

.21 Johnson PD, Tu SW, Musen MA, Purves I. A virtual medical record for guideline-based
decision support. Proc AMIA Annu Fall Symp 2001:294-8.

.22 8601 I, inventor Data elements and interchange formats - information interchange -
Representation of dates and times. 1998.

.23 National Kidney Foundation N. Clinical practice guidelines for peritoneal dialysis
adequacy. New York; 1997.

.24 American Society of Health-System Pharmacists A. Therapeutic guidelines for
nonsurgical antimicrobial prophylaxis. Am J Health Syst Pharm 1999;56(12):1201-50.

25 Cattell RGG, Barry DK, Berler M, Eastman J, Jordan D, Russell C, et al., editors. The
Object Data Standard: ODMG 3.0. San Francisco, CA: Morgan Kaufmann Publishers;
2000.

.26 Snodgrass RT. The TSQL temporal query language. Boston, MA: Kluwer Academic
Publishers; 1995.

114

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11825243
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11825243

May 4, 2004 115

GLIF3.5

Guideline Model Entit

T T A

..GuidelineDummy

Observation Value

0.r
}..Cnncem I

DataModelConceptMap

Core
GLIF

0.*
|..DataMndeICIass

Prncedum

A
‘ .Physical Quantity |§4 -Medication

t Patient Data Cnﬂel /

..Frequently Used Patient Data Cud Mocabulary Cude ime Interval |

... AttributeDescription)

_Conceptitiribute | }..Basicmtribute | |..DataModeIAmihu(e

Data.Data ltem }..Supplanenhlmtwiafiisl | \-View Specification [
S OREIL R TR Ty o+ e
| Peckagesuppremmm!matmal =
upplems , "
Jate -a
Mariable Data ftem | } ‘\..Material URL | ‘___“wwum Didactic I }__Tm Material
Data.Literal Data Item | [Data.Binary Relationship | [Pata.Data kem List .
L. Keyword

Algorithm

Guideline

|-.Maintenance Info

--Duration

=
...Times Expressic

115

May 4, 2004 116

Guideline Model Entity

& LGuideline Excemmn ql .Programming Oriented Action Specification

GLIF3.5

}...S(rength Of Evidence Or Recommendation I

=
.Action Specification

} .Patient State 5199 l..Synchronization Step

: -
2 e
Declsmn Step
/’ 4" i Mal:ru Action -Branch Step | Expresslun Of Guideline Step

Guideline Step

‘ Duratlun E mngem

.Get Data Action

-—"4

I
|...Generale Event Action I
]

.Jteration Expression 10,7 -lteration Specification

L

..Frequency Expression

teration

Anlnnll .m:imn|| ideli nniunH'

, ’ - e Actn 51

...Mal:ru Decision Step
I }..Case Stepl ﬂ%

'..Decisiun Option

..Decision Condition }--Ch“i“ Step

Decisions

|...Amen Macro I |.Conditional Data List Macro

}..Case Condition |

.LHtility Choice Step
_ -.Risk Assessment Macrg

)..thility Choice

.Atomic Frequency

0
-Get Conditional Data Macro

..Package.Macro Schemal

Macro

}..Recummendatiuns Based On Risk Macro I

-.Ruleln Choice

~Weighted Criterion

116

	Introduction
	Purpose of document
	What is GLIF?

	Overview of GLIF
	Scope of GLIF
	Bird’s eye view of GLIF
	Layers of abstraction
	Understanding GLIF3’s medical ontology
	Core GLIF
	Reference Information Model (RIM)
	The Medical Knowledge Layer

	Creating a guideline
	Header information
	Parameter passing
	Building the flowchart
	Action Steps
	Decision Steps
	Branch Steps
	Synchronization Steps
	First look at expressions
	Criteria that contain temporal operators

	Documenting the guideline
	The Global Concepts

	Specifying decisions
	Different types of decision steps
	Modeling deterministic one-of decisions (Previously known as
	Modeling non-deterministic decision Steps
	Utility_Choice_Step
	Choices
	Weighted Choice
	Utility Choice
	Specifying decision criteria
	Defining patient data

	Describing actions
	Specifying the action and parameters
	Iterative actions (and decisions)
	2. Iterate 3 times a day for 30 times

	Action Specifications
	Subguideline Action
	Assignment Action
	Generate Event Action
	Get Data Object Action
	Get Data For GEL Action
	Get_OO_Data_Action
	Medically Oriented Action

	Patient States
	Parallel paths in a guideline
	Branching to multiple paths
	Synchronizing from multiple paths

	Dealing with complex guidelines
	Nesting decisions
	Nesting actions

	RDF-based Syntax for GLIF
	Acknowledgements
	Appendix A
	Macros
	Risk Assessment Macro

	Views of a guideline
	Specifying events and exceptions
	Appendix B:
	Extended Boolean
	Duration
	Unary Operators

	List
	Unary Operators
	Binary Operators
	Binary Operators
	Binary Operators
	Binary Operators

	REFERENCES

