
May 4, 2004 1 GLIF3.5

Guideline Interchange Format 3.5
Technical Specification

May 4th, 2004

InterMed Collaboratory

Document Editors:

Mor Peleg, Aziz Boxwala, Samson Tu, Dongwen Wang, Omolola Ogunyemi, Qing Zeng

Significant contributions to the model and the document were made by (in alphabetical

order):

Nachman Ash, Elmer Bernstam, Robert A. Greenes, Ronilda Lacson, Peter Mork,

Edward H. Shortliffe

 1

May 4, 2004 2 GLIF3.5

GUIDELINE INTERCHANGE FORMAT 3.5 TECHNICAL SPECIFICATION ...1

1. INTRODUCTION..5

1.1 PURPOSE OF DOCUMENT..5
1.2 WHAT IS GLIF?...5

2. OVERVIEW OF GLIF..5

2.1 SCOPE OF GLIF ...5
2.2 BIRD’S EYE VIEW OF GLIF ..6
2.3 LAYERS OF ABSTRACTION ...7
2.4 UNDERSTANDING GLIF3’S MEDICAL ONTOLOGY..8
2.4.1 CORE GLIF ...9
2.4.2 REFERENCE INFORMATION MODEL (RIM) ..16
2.4.3 THE MEDICAL KNOWLEDGE LAYER..21

3. CREATING A GUIDELINE ..21

3.1 HEADER INFORMATION ...22
3.2 PARAMETER PASSING ..23
3.3 BUILDING THE FLOWCHART...28
3.4 ACTION STEPS ...30
3.5 DECISION STEPS ..30
3.6 BRANCH STEPS..31
3.7 SYNCHRONIZATION STEPS...32
3.8 FIRST LOOK AT EXPRESSIONS ..32
3.9 DOCUMENTING THE GUIDELINE...37
3.10 THE GLOBAL CONCEPTS ...38

4. SPECIFYING DECISIONS ..39

4.1 DIFFERENT TYPES OF DECISION STEPS ...39
4.1.1 MODELING DETERMINISTIC ONE-OF DECISIONS (PREVIOUSLY KNOWN AS CASE STEPS)............................39
4.1.2 MODELING NON-DETERMINISTIC DECISION STEPS ...44
4.1.2.1 UTILITY_CHOICE_STEP..45
4.1.2.2 CHOICES ...45
4.1.2.3 WEIGHTED CHOICE..47
4.1.2.4 UTILITY CHOICE...47
4.2 SPECIFYING DECISION CRITERIA ..47
4.3 DEFINING PATIENT DATA...48

5. DESCRIBING ACTIONS ...50

 2

May 4, 2004 3 GLIF3.5

5.1 SPECIFYING THE ACTION AND PARAMETERS..50
5.2 ITERATIVE ACTIONS (AND DECISIONS)...50
5.3 ACTION SPECIFICATIONS...53
5.3.1 SUBGUIDELINE ACTION...54
5.3.2 ASSIGNMENT ACTION ...54
5.3.3 GENERATE EVENT ACTION..55
5.3.4 GET DATA OBJECT ACTION...55
5.3.5 GET DATA FOR GEL ACTION..55
5.3.6 GET_OO_DATA_ACTION..56
5.3.7 MEDICALLY ORIENTED ACTION..56

6. PATIENT STATES..57

7. PARALLEL PATHS IN A GUIDELINE...60

7.1 BRANCHING TO MULTIPLE PATHS ..60
7.2 SYNCHRONIZING FROM MULTIPLE PATHS ..60

8. DEALING WITH COMPLEX GUIDELINES ...60

8.1 NESTING DECISIONS ..61
8.2 NESTING ACTIONS ...62

9. RDF-BASED SYNTAX FOR GLIF ...64

10. ACKNOWLEDGEMENTS..66

A. APPENDIX A ...67

1. MACROS..67

Risk Assessment Macro..71

2. VIEWS OF A GUIDELINE ..73

3. SPECIFYING EVENTS AND EXCEPTIONS..78

B. APPENDIX B: ..82

4. EXTENDED BOOLEAN...94

5. DURATION..101

5.1 UNARY OPERATORS ..102

6. LIST ..104

 3

May 4, 2004 4 GLIF3.5

6.1 UNARY OPERATORS ..104
6.2 BINARY OPERATORS ...105
6.3 BINARY OPERATORS ...109
6.4 BINARY OPERATORS ...110
6.5 BINARY OPERATORS ...111

7. REFERENCES...113

 4

May 4, 2004 5 GLIF3.5

1. Introduction

1.1 Purpose of document

1.2 What is GLIF?
GLIF3 is a methodology that enables modeling and representation of clinical guidelines in a
structured manner. Such guidelines can be used for clinical decision support applications.

Guidelines are modeled in GLIF at three levels of abstraction: a conceptual flowchart that is
easy to author and comprehend, a computable specification that can be verified for logical
consistency and completeness, and an implementable specification that can be incorporated into
particular institutional information systems.

The GLIF3 model is object-oriented. It consists of classes, their attributes, and the relationships
among the classes, which are necessary to model clinical guidelines. The model is described
using Unified Modeling Language (UML) class diagrams [1]. Additional constraints on
represented concepts are being specified in the Object Constraint Language (OCL), a part of the
UML standard.

A top-level view of the GLIF model is shown in Figure 1. The complete class hierarchy is
shown in Appendix C.

G u id e lin e M o d e l
E n tity

N e s ta b le

G u id e lin e M a c ro

A c tio n
S te p

D e c is io n
S te p

M a c ro
A c tio n S te p

D e c is io n
O p tio n

C a s e
S te p

C h o ice
S te p

M a c ro
D e c is io n S te p

P a tie n t s ta te
S te p

B ra n c h
S te p

S yn c h ro n iza tio n
S te p

A g g re g a tio n

G e n e ra liza tio n

Figure 1. The GLIF model. A top-level view of the main GLIF classes

2. Overview of GLIF

2.1 Scope of GLIF
GLIF is intended to be used in a variety of guidelines. Guidelines may be classified according to
the clinical domain, the stage of the medical problem and its management (e.g., screening,
diagnosis, disease management), multiple or single encounters, setting (e.g., inpatient or

 5

May 4, 2004 6 GLIF3.5

outpatient clinic), time frame (emergency, acute, or chronic), and guideline computability (i.e.,
algorithmic, guiding, or intermediate) [2]. We have used GLIF to encode a variety of guidelines
including guidelines for Influenza vaccination [3], management of chronic cough [4],
management of stable angina [5], thyroid screening [6], lower back pain [7], heart failure [8],
depression [9], community-acquired pneumonia [10], hypertension [11], and migraine headaches
[12], as shown in Table 1 [13].

Table 1 – Classification of GLIF3-encoded Guidelines

Disease/ Condition Stage of
Problem

Encounters Setting Time Frame Computability

Flu prevention 1 outpatient acute algorithmic

Stable Angina management many outpatient acute/chronic intermediate

Chronic cough Diagnosis +
management

many outpatient acute intermediate

Lower back pain Diagnosis +
management

many outpatient acute intermediate

Heart failure management many outpatient acute/chronic algorithmic

Depression management many outpatient acute algorithmic

Thyroid screening screening 1 out acute algorithmic

community-acquired
pneumonia

management many in/out acute algorithmic

hypertension management many out chronic intermediate

migraine headaches management many out acute/chronic algorithmic

2.2 Bird’s eye view of GLIF

In GLIF, guidelines are represented as a flowchart of temporally sequenced nodes called
guideline steps. Different classes of guideline steps are used for modeling different constructs:

• The Decision_Step class represents decision points in the guideline. A hierarchy of
decision classes provides the ability to represent different decision models.

• The Action_Step class is used for modeling actions to be performed. Action steps
contain tasks. Two distinct types of tasks can be modeled: medically oriented actions
such as a recommendation for a particular course of treatment, and programming-oriented
actions such as retrieving data from an electronic patient record. Nesting of steps,
discussed in Section 8, allows recursive specification of actions and decision. In other

 6

May 4, 2004 7 GLIF3.5

words, through nested steps, one can specify details of high-level actions and decisions as
subguidelines.

• The Branch_Step and Synchronization_Step allow modeling of multiple simultaneous
paths through the guideline.

• Patient_State_Steps serve as entry points into the guideline as well as allow for labeling
patient states (e.g., a state of taking one anti-hypertensive drug).

The GLIF specification includes an expression language that is derived from the logical
expression grammar of Arden Syntax. The expression language can be used for representing
decision criteria, triggering events, exceptional conditions, duration expression, and states.

A medical ontology allows the use of standard controlled vocabularies and reference information
models to specify linkages to individual patient data, medical knowledge, and clinical actions.
This will facilitate sharing of guidelines among institutions.

The specification for supplemental material allows one to associate didactic material with the
guideline itself or to some sections of it. The supplemental material can be in different formats
(such as plain text and HTML) and can be for different purposes (such as rationale, further
reading, patient education, etc).

2.3 Layers of abstraction
GLIF3 supports representing clinical guidelines in three levels of abstraction. When a guideline
is first authored, a conceptual level of representation (called level A) is created. This level
enables the guideline author to concentrate on conceptualizing a guideline as a flowchart. At this
level of abstraction, the author is not concerned with formally specifying details, such as decision
criteria, relevant patient data, and iteration information that must be provided to make the
specification computable. The specification of these details is performed at the computable level
of abstraction (level B), where medical concepts, patient data item definitions, logical criteria,
and control flow are formally specified. We intend to create tools that will aid in the validation
and simulation of guidelines that are specified at the computable level.

Before guidelines can be incorporated into an institutional information system, actions and
patient data references must be mapped to institutional procedures and electronic medical records
(EMRs). This mapping information is represented in the implementable level (level C). The
implementable level has not yet been completed.

The different levels of abstraction are achieved by specifying values for different attributes of the
GLIF classes. For example, a decision criterion (the Criterion class) has a name attribute that
contains an English sentence that describes the criterion in free text (e.g., high LDL cholesterol)
and also a specification attribute that contains a formal definition of the criterion using the GEL
expression language

(e.g., selectAttribute(“pq_value”, selectAttribute(“value”, Current_LDL_Cholesterol)) >= 160
and selectAttribute(“unit”, selectAttribute(“value”, Current_LDL_Cholesterol)) ==mg/dL)

 7

May 4, 2004 8 GLIF3.5

The name attribute is specified at level A, while the specification attribute is specified at level B.
When a domain expert encodes the guideline, he can first specify the level A attributes. Later on,
an informatician can specify the level B attributes, after consulting with the domain expert. All
GLIF classes have at least one level A attribute that lets the author describe the construct in
unconstrained narrative text.

2.4 Understanding GLIF3’s medical ontology

Logical expressions (criteria) and action specifications reference patient data items and medical
concepts. These concepts are formally defined in the medical ontology, by referencing standard
controlled vocabularies (e.g., UMLS [14]) and standard medical data models (e.g., HL-7’s
Reference Information Model version 1.0 [14]). Defining medical concepts in relationship to
standard controlled medical vocabularies enables the guideline encoding in Level B to contain
concepts that are not institution-dependent. The institution-dependent terms can therefore be
specified only in level C, which will define the mappings between the Level B guideline terms
and the institutional terms. Defining the structure of patient data items in accordance to standard
medical data models is done to ease the process of mapping Level B guideline patient data items
to institutional EMR codes and to facilitate the process of sharing guidelines. The support of the
ontological needs for guideline modeling is separated into three layers, correlated to levels of
abstraction. The first layer, Core GLIF, is part of the GLIF specification language. It defines a
standard interface to medical data items and concepts, and to the relationships among them.

The second layer, Reference Information Model (RIM), is essential for guideline execution
and data sharing among different applications and different institutions. It defines the basic data
model for representing medical information needed in specifying protocols and guidelines. It
includes high-level classification concepts, such as medications and observations about a patient,
and attributes, such as units of a measurement and dosage for a drug, that medical concepts and
medical data may have. The default RIM that GLIF3 supports is HL-7’s Reference Information
Model (RIM) version 1, also known as the Unified Service Action Model (USAM) [15].

The third layer, Medical Knowledge Layer is still under development. It will be specified in
terms of the methods that it should have for interfacing to the following medical knowledge
sources:

1. Controlled vocabularies, like UMLS, that define medical concepts by giving them textual
definitions and unique identifiers.

2. Medical knowledge bases that define medical knowledge, such as drug hierarchies, and
normal ranges for test results.

3. Clinical repositories (EMRs)

4. Other clinical applications, such as order entry systems, alert/reminder systems.

When all three layers are involved, they work closely together: Core GLIF relies on the RIM to
supply the attributes of the medical concepts and to represent data values. Core GLIF relies on
the Medical Knowledge Layer for accessing specific medical concepts.

 8

May 4, 2004 9 GLIF3.5

In the three-layered medical ontology, users have the freedom to choose a particular RIM and a
particular medical knowledge layer that fits their needs. We encourage guideline authors to use a
single RIM and a single controlled vocabulary to encode one guideline. This eases the process of
sharing the guideline, since mapping terms that belong to different RIMs and vocabularies is a
difficult task.

2.4.1 Core GLIF

Figure 2. The Data model package, which is part of Core GLIF

Core GLIF defines the medical data model of GLIF3, which is, how medical data items are
structured and how they relate to medical concepts. The specification of the Core GLIF layer is
shown in Figure 2. GLIF3’s Basic_Data_Type can be a Primitive_Data_Item (shown in Figure
6), A Data_Item, or a Knowledge_Item.

GLIF clinical decisions and actions refer to patient data items. Each patient Data_Item is
defined by a medical concept, taken from some standard controlled vocabulary, and by a data
model class and source. The data model class and source indicate the Reference Information
Model (RIM) class and RIM model that is used for defining the data item’s data structure. A data
item also has a (complex) data value. A data value is a list of Data_Item_Values. There are two
types of data item values: the Patient_Data class of the default RIM, shown in Figure 9, or from
a user-defined Data_Model_Instance class, shown in Figure 6, which is part of Core GLIF.

Core GLIF distinguishes between two types of patient data items: literals (constants) and
variables. Variable_Data_Items represent data that needs to be instantiated at run time from
external sources (e.g., electronic medical record) when the guideline is being applied to a
specific patient or to a group of patients. Patient’s height, weight, gender, and age are examples
of variable data items. A variable data item has an owner, to which the data value belongs.
Specifying the owner of a data item is necessary because sometimes even in one guideline, data
from multiple patients will be mentioned (e.g., phase-I clinical trial guidelines sometimes refer to

 9

May 4, 2004 10 GLIF3.5

a cohort of patients) although most of the guidelines are not applied to groups of patients.
Variable data items are used when specifying decision criteria, as shown in Section 4.2.

A Literal_Data_Item is a data item that has a fixed value. It is similar to a constant in
programming languages. Unlike a variable data item, a literal does not have an owner and its
data value is modeled by a list of exactly one instance of Data_Item_Value. Congestive heart
failure, female, smoker, and TSH-test-order are all examples of literal data items. The values of
literal data items are assigned at authoring time. When specifying action specifications, literal
data items are used to specify a recommended action. An example is shown in Section 0. Literal
data items are also used to specify literal values in decision criteria, as shown in Figure 42 of
Section 4.2.

A Data_Item_List is a run-time object that allows referencing different data items in a single
list. For example, all of the data items that are referred by a guideline are stored in a data item list
(See Figure 16).

GLIF3 has two types of Knowledge_Items: Concept and Concept_Relationship. They are both
an embedded part of GLIF, unlike the Reference Information Model that can be taken from
various sources (e.g., HL7). A Concept is defined by defining its name, concept_id, the id of its
source (concept_source), that is, what local vocabulary did the concept come from. Concept
relationships are created using the Concept_Relationship class. An example is given in Figure
3.

Figure 3. A concept hierarchy. The Concept_Ids are the UMLS codes for cough and chronic cough

 10

May 4, 2004 11 GLIF3.5

A (patient) Data_Item_Relationship is a relationship between two data items (e.g., a certain
patient’s high body temperature was caused by a viral infection). Each data item relationship has
an associated code (e.g., “caused_by”), directionality, and a certainty attribute that expresses
how sure we are that the relationship holds.

When users simply want to create a human-readable guideline, a RIM or controlled vocabulary
might not be needed. When both the RIM and Medical Knowledge layers are absent, the concept,
data_model_class_id, and data_model_source_id attributes of the data item are marked as
“UNKNOWN”. When a data item fails to be mapped to a concept, the referring concept is
automatically assigned the value “UNKNOWN”. When a data item does not have a data model
specified by the RIM layer, the type for its data value is assigned to be a Data_Model_Instance
whose values attribute is of the primitive type String_Value.

Sometimes, standard controlled vocabularies do not define a concept that the guideline needs to
express. Similarly, a guideline may need to refer to data model classes that are not supported by
the default RIM. In these cases, Core GLIF defines a way for the guideline author to define new
concepts and hierarchies of concepts, new data model classes, and to map a concept to a data
model class. The classes of Core GLIF that enable these functionalities are shown in Figure 4.

 11

May 4, 2004 12 GLIF3.5

Figure 4. Core GLIF class diagram

A Data_Model_Class is an embedded part of GLIF, unlike the Reference Information Model that
can be taken from various sources (e.g., HL7). A Data_Model_Class allows a user to define
RIM classes that are not part of the default RIM. A data model class is defined by specifying its
attributes and its parent data model class, thus supporting sub-classing. GLIF’s Get_Data_Action
(5.3.4) retrieves data from the EMR and presents it in a form of a Query_Result. A Query_Result
assumes that each data value is associated with a primary timestamp. Therefore, on of the time-
attributes of a Data_Model_Class will be defined in a Get_Data_Action as the primary time
attribute.

The AttributeDescription class defines the attributes of a Data_Model_Class . Each attribute
description object has a name and cardinality. There are three subclasses of
AttributeDescription. They differ in the types of attributes that they define. The three sub-
classes are:

 12

May 4, 2004 13 GLIF3.5

1. BasicAttributes, which are string, integer, float, Extended_Boolean, absolute_time,
duration, interval, list, and set.

2. ConceptAttributes, which define the range of concepts that are allowed to serve as the
value of the attribute. For example, if the concept attribute refers to the concept “gender”,
then the allowed values for the attribute are male and female.

3. DataModelAttributes, that are attributes whose type is another data model class.

When users define data model classes, they need to define the domain of each attribute of the
data model class, that is, what concepts would use that data model class. Therefore, every
AttributeDescription has a “domain” attribute that specifies the list of Concepts that define the
domain of the attribute. (Note: This replaced GLIF 3.1’s DataModelConcept_Map)

Figure 5 shows an example of a data model class.

Figure 5. An example of a data model class with a basic attribute. Observation_with_certainty is derived
from USAM’s Observation class and extends it by adding the simple attribute “certainty”, of type Integer.

Instances of user-defined (where the user is the guideline author) DataModelClass are defined
using the Data_Model_Instance shown in Figure 6. Examples are shown in Figure 7 and Figure
8.

 13

May 4, 2004 14 GLIF3.5

Figure 6. User Defined Instances Ontology

A Data_Model_Instance identifies the concept and the data_model class and source that it
refers to. It also has a “values” attribute, which is of a list of Instance_Value objects.

An Instance_Value can be either a Concept_Value or a Patient_Data_Value. Concept values

refer to concepts, as in the example shown in Figure 8. Patient data values have Data_Values,

which can be either Primitive_Data_Values (i.e., integer, float, string, time-stamp, duration,

extended Boolean, symbol, list, or set, as shown in Figure 6), or compound.

Compound_Data_Values have parameters, of type Parameter_Name_And_Type, which refer

to other data values.

 14

May 4, 2004 15 GLIF3.5

Figure 7. An instance of systolic blood pressure result, which corresponds to the locally defined

Observation_with_certainty class that is shown in Figure 5.

Figure 8. An instance of Demographics, which has a Concept_Value of the concept “gender”

 15

May 4, 2004 16 GLIF3.5

2.4.2 Reference Information Model (RIM)

A RIM defines a class hierarchy that organizes medical concepts into classes. For each class, the
RIM provides a data model that defines the attributes of the different classes. We examined
several reference information models, including HL-7’s RIM version 0.94, the clinical part of
HL-7’s RIM version 1.0 (also known as the Unified Service Action Model (USAM),
foundational models in SNOMED-RT, and the National Library of Medicine’s Semantic Net,
which is part of UMLS.

We chose to use HL-7s Unified Service Action Model as our default reference information
model, because of its generality. We use RIM's Service_Action class for representing patient
data. We therefore renamed the Service_Action class as Patient_Data. We are not utilizing all of
the classes and attributes that are defined in the RIM, since we have a different approach for
modeling them in GLIF. Specifically, we are only using the Service_Action (Patient_Data),
Medication, Observation, and Procedure classes. The following changes were also made:

1. We are not representing the following attributes of the service (patient data) class:
max_repeat_number, interruptible_ind, substitution_cd, priority_cd, and
orderable_indication.

2. We added two attributes to the Observation class: severity, and certainty that we found
lacking from HL7-RIM's Service_Action class.

3. We simplified some of the attribute data types used by the RIM. For example, for
activity_time and critical_time, we only allow time intervals, and not every temporal
function.

The RIM reference information model class diagram is shown in Figure 9. Figure 10 shows
the enumerated codes used by the RIM reference information model.

 16

May 4, 2004 17 GLIF3.5

Figure 9. HL-7’s RIM class diagram

 17

May 4, 2004 18 GLIF3.5

Figure 10. The codes used by the HL7-RIM ontology

 18

May 4, 2004 19 GLIF3.5

Examples of RIM Observation and Medication are shown in Figure 11 and Figure 12,
respectively.

Figure 11. An example of a RIM observation showing an LDL cholesterol of 160 mg/dL that was taken within

the past month

 19

May 4, 2004 20 GLIF3.5

Figure 12. An example of a RIM medication showing that ACE inhibitor was used for some time interval

 20

May 4, 2004 21 GLIF3.5

2.4.3 The Medical Knowledge Layer
As was mentioned before, the medical knowledge layer will contain interfaces to controlled
vocabularies, medical knowledge bases, and EMRs. It will be specified in terms of the methods
that it should have for interfacing to the medical knowledge sources.

The medical knowledge layer is still under development. Nonetheless, we do view this layer as a

very important part of the GLIF ontology, especially for the purpose of integration into local

institutional environments.

3. Creating a guideline

Figure 13. The Guideline Package

The Guideline class is used to model clinical guidelines and sub-guidelines (described in Section
5.3.1). A guideline contains an Algorithm, which is a flowchart of guideline steps. GLIF’s
guideline class specifies Maintenance_information (such as author, guideline_status,
encoded_last_modification date, and guideline_version), the intention of the guideline, eligibility
criteria, didactics, and the set of exceptions that interrupt the normal flow of execution of the
guideline. The guideline defines patient data items that are accessed by it and parameters that the
guideline passes in and out to other sub-guidelines. A guideline also has “let expressions” that
define global definitions (see Section 3.8). For each guideline, default viewers may be specified.

 21

May 4, 2004 22 GLIF3.5

Since different users may be interested in different parts of a large, complex guideline,
differential display capability is supported. This capability is provided through the use of filters
that collapse segments of the guideline into a default view of the guideline customized to a given
user, situation, etc.

A Guideline_Collection object identifies the primary (top-level) guidelines in a guideline file.
There is only one Guideline_Collection object per guideline file. There are other guideline
objects in a file. These are subguidelines.

An example of a GLIF-encoded guideline that was authored using the Protégé authoring tool is
shown in Figure 14.

Figure 14. A Stable Angina guideline that was encoded in GLIF using the Protégé authoring tool

3.1 Header information
The Maintenance_Info class, shown in Figure 13, represents maintenance information related to
guidelines. An example is shown in Figure 15.

 22

May 4, 2004 23 GLIF3.5

Figure 15. Maintenance information of the stable angina guideline shown in Figure 14

3.2 Parameter passing
By default, data items are not shared between guideline and sub-guideline. The reason for this is
that guidelines and sub-guideline can be relatively independent of each other and may not be
created by the same authors. Each sub-guideline has a data-items list that lists all the data items
that it uses.

Sub-guideline sometimes may require some data from the calling guideline. Such needs should
be explicitly declared in the form of a parameters-passed list. For each parameter in the list, the
permitted passing direction (IN, OUT, IN/OUT). IN means that the parameter value may be read

 23

May 4, 2004 24 GLIF3.5

but not written. OUT means that parameter value may set, but cannot acquire values from
outside the sub-guideline. IN/OUT means that the parameter value may be both read from the
outside, and reset. The parameters passed can be data items or variables. A pointer that points to
them specifies data items. Variables are specified by indicating their name and type.

Referencing a sub-guideline transfers control from one guideline to another.

The figures below show an example of a main guideline (treatment of cough) that passes
parameters in and out to a sub-guideline called “cessation of smoking/ACEI.

Guidelines need to be aware of the data items that they use (in decision criteria and action
specifications). They also should define parameters that are passed to them and/or that they pass
out. For example, the treatment guideline, whose algorithm is shown in Figure 17, defines
several data items in its data_item_list slot, as shown in Figure 16. Some of these data items
(e.g., pregnancy) are not parameters that need to be passed to other guidelines. The
parameters_passed slot specifies the parameters that need to be passed in or out of other (sub)
guidelines. For example, the treatment guideline has a sub-guideline called “cessation of
smoking/ACEI”. The sub-guideline needs to “read” the following attributes from the outer
treatment guideline: ACEI, smoker, cough, and X_Ray_done. Therefore, the treatment guideline
needs to export these parameters out (to the sub-guideline). The cessation of smoking/ACEI sub-
guideline may perform an X-ray. It will then need to change (export out) the values of the
following data items: X-Ray_done and X-Ray_result. The treatment guideline will therefore
need to import (read in) these two data items. Similarly, Further_Test_Can_Be_Ordered needs to
be passed in and out between the treatment and cessation of smoking/ACEI guidelines (see also
Figure 18). The Time_Of_Stopping_Smoking_ACEI_Order needs to be passed out of the
cessation guideline and into the treatment guideline.

 24

May 4, 2004 25 GLIF3.5

Figure 16. The “treatment of cough” guideline and the lists of data items that it uses and parameter that it

passes/are passed to it by other guidelines.

 25

May 4, 2004 26 GLIF3.5

Figure 17. The treatment of cough algorithm that calls a sub-guideline called “cessation of smoking/ACEI”

 26

May 4, 2004 27 GLIF3.5

Figure 18. The “cessation of smoking/ACEI” guideline and the lists of data items that it uses and parameter

that it passes/are passed to it by the treatment of cough guideline.

 27

May 4, 2004 28 GLIF3.5

3.3 Building the flowchart
The flowchart is an instance of the Algorithm class. It may contain one or more instances from
any of 5 classes of guideline steps: action, decision, branch, synchronization, and patient state
(see sections 3.4, 3.5, 3.6, 3.7, and 6. The first_step attribute indicates the starting point of the
algorithm. Next step, branches, and options attributes of the algorithm’s guideline steps provide
the flow among the steps of the algorithm. Examples of algorithms can be seen in Figure 19 and
Figure 20. The Algorithm class diagram is shown in Figure 13.

<patien

Figure 19
<action step>
t state step>

. An a
<decision step>

lgorithm for the stable angina guideline shown in Figure 14

 28

May 4, 2004 29 GLIF3.5

Figure 20. The algorith
immunocompetent adu

As described earlier
subclass is used fo
didactics. The hierar

Figure 22. The Guideli
<branch step>

<action step>

m for eva
lts.

, the step
r a step
chy of gu

ne_step cla
<decision step>

luating Post Nasal Drip Syndrome (PNDS) as the cause of

s of the algorithm are subclasses of the Guideline_S
with a different purpose. Each step has a name
ideline steps is shown in Figure 22.

ss hierarchy

<sync step>

 chronic cough in

tep class. Each
and associated

29

May 4, 2004 30 GLIF3.5

3.4 Action Steps
Action Steps specify clinical actions that are to be performed in the patient-care process. An
action step specifies a set of tasks (Action_Specifications, discussed in Section 5.3) that need to
be performed. The order in which the tasks are executed is not specified. The action step has
attributes that specify its strength of recommendation, strength of evidence1, didactics, iteration
information, duration range, triggering events, and associated exceptions (events and exceptions
are discussed in Section 3 of Appendix A. Action Steps can be refined by including a task of
Subguideline_Action type in the step. The Subguideline_Action task has a (sub)guideline
attribute that contains the nested subguideline. An action step has a next step attribute that is
used to specify the step to go to once this step has finished execution. When a guideline step has
finished its execution and the control flow is about to pass to the next step, then, if the next step
has associated triggering events, then this next step is executed only after one of its triggering
event occurred. An example of an action step is shown in Figure 23. The class diagram of the
action step is shown in Figure 22.

Figure 23. An example of an action step

3.5 Decision Steps
Decision steps, shown in Figure 31, conditionally direct flow from one guideline step to another.
GLIF provides a flexible decision model through a hierarchy of decision step classes. The
Decision Step allows specification of deterministic as well as non-deterministic decisions.
Examples of decision steps are shown in Figure 20. The decision hierarchy can be extended in
the future to model decisions that consider uncertainty or patient preferences. The hierarchy
might be extended to support different decision models.

1 Strength of evidence marks the way the guideline authors evaluate the strength of evidence that
supports a recommendation. Strength of recommendation indicates whether the guideline authors
want the physician to follow the recommendation in every case, or do they relax the
recommendation

 30

May 4, 2004 31 GLIF3.5

Decision Steps are nested by specifying a (sub)guideline in the decision_detail attribute of the
step. This subguideline is executed before the decision criterion for that step is evaluated. The
subguideline would modify or create new variable data items and assign them values. The use of
these variables in the decision criteria makes the decision nested. An example of a nested
decision step is shown in Figure 54 and Figure 55. Like the action step, a decision step has
attributes that specify its strength of recommendation, strength of evidence, didactics, iteration
information, duration range, triggering events, and associated exceptions (events and exceptions
are discussed in Section 3 of Appendix A.

The decision hierarchy is discussed in greater detail in Section 4.1.

3.6 Branch Steps
The branch step is used to model concurrent guideline steps. Branch steps direct flow to multiple
guideline steps. All of these guideline steps must occur in parallel. A branch step may link a
guideline step to any other guideline step. An example of a branch step is shown in Figure 24.
The class diagram of a branch step is shown in Figure 22.

The selection method (e.g., “one of”) that characterized the branch step in GLIF2 was removed
so that the branch step would not semantically overlap the case step.

Like every other guideline step, branch steps have didactics and strength of evidence.

Figure 24. An exampl
<action step>

<branch step>
e of branch and
<synchronization step>

>= 3

 synchronization steps

 31

May 4, 2004 32 GLIF3.5

3.7 Synchronization Steps
Synchronization steps are used in conjunction with branch steps. When multiple guideline steps
follow a branch step, the flow of control can eventually converge in a single step. Each branch
may lead to a series of steps, resulting in a set of branching paths. The step at which the paths
converge is the synchronization step. When the flow of control reaches the synchronization step,
a continuation attribute specifies whether all, some, or one of the preceding steps must have been
completed before control can move to the next step. The continuation is expressed as a logical
expression of guideline steps (e.g., ((Step_A or Step_B) indicates that flow must continue once
either Step A or Step B are completed). The syntax of the expressions for specifying continuation
is as follows:

 Logical_expression_of_guideline_steps: Guideline_Step |
(Logical_expression_of_guideline_steps) | not Logical_expression_of_guideline_steps |
Logical_expression_of_guideline_steps and Logical_expression_of_guideline_steps |
Logical_expression_of_guideline_steps or Logical_expression_of_guideline_steps | >= Integer

Like every other guideline step, synchronization steps have didactics and strength of evidence.

3.8 First look at expressions

Guideline_Model_Entity

 32

May 4, 2004 33 GLIF3.5

Figure 25. The Guideline_Expression hierarchy

The Guideline_Expression class is a parent class for all expressions, whether they are (logical)

criteria (e.g., Age > 32), or simply expressions (e.g., Age). Expressions may have arithmetical or

text data items, can contain temporal information, and can refer to single variable data items or to

lists of data items. Examples of different expressions and criteria are shown in Figure 26.

Different expression languages can be used with the Guideline_Expression class. Previously, we

had developed a language called Guideline Expression Language (GEL) [16] that is based on the

Arden Syntax [17]. A BNF grammar for GEL as well as a list of operators that are part of GEL

but are not present in Arden Syntax and vice versa are presented in Appendix B. The

Get_Data_Action_Specification (see Section 5.3.4) is used to retrieve data item values from

EMRs. The retrieved data is presented in the form of a Query_Result that can be use by GEL

expressions or criteria.

However incompatibilities between this language (which was designed for a time-stamped, list-

oriented data structure) and the object-oriented CIM soon became apparent [18]. We thus

redesigned the language to an object-oriented form. This new language, dubbed GELLO [19]

(loosely for “guideline expression language, object-oriented”), supports query and expression

formulation. In this language, the queries and expressions share a common object-model because

the results of queries are used (as variables) in decision criteria and other expressions, and

because expressions are used as data selection predicates in queries.

GELLO query statements [20] map patient data (that are subsequently used in expressions) to

entries in the medical record. The query syntax has been designed in the context of the decision-

support execution model proposed in the HL7 Clinical Decision Support Technical Committee

(CDSTC). This model envisions the use of a “virtual medical record” (vMR) compatible with the

HL7 RIM that provides a standard data model as an intermediary to heterogeneous medical

record systems [21]. In the current GLIF specification, the CIM serves the function of a vMR

data model. The specifications for a standard vMR are being developed in the HL7 CDSTC. We

will adopt the standard model when it is published. Note that the query syntax for GELLO does

not depend on specific classes or tables in the vMR. However, it does depend on the general

 33

May 4, 2004 34 GLIF3.5

framework of an object-oriented data model. The query statement below2 retrieves currently

active ACE-inhibitor medication prescriptions for a patient:

Medication->select(meds :

meds.service_cd.equals(

Concept.new(“ACE-inhibitor”, “C-80150”, “SNOMED-CT”)) and

meds.critical_time.max_time_stamp.greaterThan(now))

The expression syntax is strongly-typed and object-oriented. In addition to basic data types and

operations, it allows the use of classes, class attributes, and methods that can be used to create

complex mathematical, logical, and temporal expressions. The expressions often consist of

operations over variables initialized by the queries, (e.g.,

active_ACE_inhibitor_orders.is_empty(), where active_ACE_inhibitor_orders is a variable

assigned the result of the query above).

Work on the GELLO expression and query language is continuing in the HL7 CDSTC and other

committees to extend the application of GELLO to different specifications in HL7 that require

constraints, expressions, and mapping of variables to data. Among potential application

specifications are those for guidelines, Arden Syntax rules [17], and templates. Accordingly, the

focus of the effort is on making the language independent of particular data models, making it

free of side-effects (i.e., preventing GELLO expressions from altering application variables), and

compatible with the basic datatypes specification in HL7’s version 3.0 specification.

2 The GELLO language had evolved rapidly during the latter part of the InterMed project. The example here uses

the syntax that is based on Object Constraint Language (OCL) .20 Warmer J, Kleppe A. The Object Constraint

Language: Getting Your Models Ready for MDA. 2nd ed. Boston, MA: Addison-Wesley Pub Co; 2003.. In an

earlier version of GELLO, used in GLIF 3.5, the syntax was based on Object Query Language .25 Cattell RGG,

Barry DK, Berler M, Eastman J, Jordan D, Russell C, et al., editors. The Object Data Standard: ODMG 3.0. San

Francisco, CA: Morgan Kaufmann Publishers; 2000. and Temporal Structured Query Language .26

 Snodgrass RT. The TSQL temporal query language. Boston, MA: Kluwer Academic Publishers; 1995..

 34

May 4, 2004 35 GLIF3.5

Arithmetic expressions:
heart_beats_per_min / 60
5 + 6 * 7 / 8

Criterion that involves string literal data item:
test_name == “Serum_Potassium” (test_name is a variable data item)

Criterion that involves a list of variable data items
Cough is in Problem_list (where Cough is a concept, and Problem_list is a list
of concepts)

Criteria that involves a single data item

Latest_LDL_Cholesterol_Test_Result < 160 mg/dL

selectAttribute(“pq_value”, selectAttribute(“value”, Current_LDL_Cholesterol))
>= 160 and
selectAttribute(“unit”, selectAttribute(“value”, Current_LDL_Cholesterol)) ==mg/dL)

Criteria that contain temporal operators
(smoking_end_time >= now and chronic_cough_end_time >= now)
latest_LDL_Cholesterol_Test_Result_recording_time is before 1998-12-20
latest_LDL_Cholesterol_Test_Result_recording_time is after week_3_of_pregnancy
latest_LDL_Cholesterol_Test_Result_recording_time is within past 15 days
latest_LDL_Cholesterol_Test_Result_recording_time is within 1999-12-
 03T20:46:01 to 1999-12-10T20:46:01
blood_pressure_reading occurs at 1995-03-20T18:30:15
previous_chemotherapy is not within past 2 years

Figure 26. Examples of GEL expressions and criteria

Evaluating criteria
Currently, GLIF supports only three-valued criteria. In the future, probabilistic criteria might be
added. The temporal criterion

 (smoking_end_time >= now and chronic_cough_end_time >= now)

evaluates to “true” if the patient is a smoker and has a chronic cough. It evaluates to “false” if the
patient is not a smoker, or does not have a chronic cough, or is neither a smoker nor has a
chronic cough. It evaluates to either “unknown” or “false” if it is unclear whether the patient is a
smoker or has a chronic cough. The interpretation of a non-existing value as false or unknown
should be defined by the implementation and should depend on the data item.

Referring to time-literals
Time literals in GEL involve a specific instance in time (expressed as yyyy-mm-
ddThh:mm:ss.millisec(Z|+/-hh:mm) based on Arden syntax notation, which, in turn, is based on
the ISO standard 8601:1988. [22]. Z is the abbreviation used for Coordinated Universal time,
also known as the "zero meridian" time. When Z is not used, local time is assumed. The string

 35

May 4, 2004 36 GLIF3.5

+hh:mm can be added to the time to indicate that the used local time zone is hh hours and mm
minutes ahead of UTC. For time zones west of the zero meridian, which are behind UTC, the
notation -hh:mm is used instead. For example, Central European Time (CET) is +0100 and
U.S./Canadian Eastern Standard Time (EST) is -0500. Examples of time literals are “1999-11-
22T08:30:00”, “2 days before 1999-11-22T08:30:00”, “2000-09-19T12:31:42.435-04:00”, and
“2000-09-19T12:31:40.125Z”.

Let Expression: Let expressions are used to define global definitions. At execution time, the
identifier of a Let Expression is replaced by the expression_string of the Let Expression, just
like in a macro substitution of programming languages. This occurs every time the identifier of
the Let Expression is encountered. Let Expressions enable guideline authors to represent
definitions that they can later on refer to. The example of Figure 27 shows that Age is defined as
the current time “now” minus the date of birth (DOB), where DOB is a global variable data item
and “now” is a globally defined temporal operator.

A Let Expression can be used to define global definitions or local definitions. If the let
expression is defined as an attribute of a guideline object, then the let defines a global definition.
If the let expression is defined as an attribute of a Guideline_Expression object, then the let
defines a local definition.

Let Expressions are similar to Assignment Action Specifications, discussed in Section 5.3.2. The
difference is that an Assignment Action assigns an identifier the result of the expression_string
once. After that, the identifier’s value remains constant throughout the execution of the guideline
and is not reevaluated every time the identifier is encountered.

Figure 27. An example
 of a Let Expression

 36

May 4, 2004 37 GLIF3.5

3.9 Documenting the guideline

Figure 28. The supplemental material package class diagram.

Supplemental material can be used to include additional documentation for a guideline.
Supplemental material can be of different formats such as text material, URLs, and keywords.
The Supplemental_Material_List class is used to package a number of different supplemental
material objects that serve the same purpose. The purpose of the Supplemental_Material_List
class can be selected from the enumerated type Supplemental_Material_Purpose.

All the different formats of supplemental material are sub-classes of the Supplemental_Material
class. All supplemental materials define their format through the Mime_Type_format attribute.
The domain of this attribute is a Multipurpose Internet Mail Extensions (MIME) type such as
text/plain, text/html, image/gif, and mov/qt.

 37

May 4, 2004 38 GLIF3.5

Figure 29. An example of supplemental material packages.

3.10 The Global Concepts

Figure 30. The global concepts package

In this package we define concepts that are applicable to many parts of the guideline model. For

example, a medical concept is part of the RIM, the data model, and of supplemental material.

Temporal constructs are part of the RIM and of iterations.

 38

May 4, 2004 39 GLIF3.5

4. Specifying decisions

4.1 Different types of decision steps
Decision steps, shown in Figure 31, represent decision points where a choice has to be made

among competitive, mutually exclusive alternatives (decision options). In automatic decisions, if

the criteria specified in the decision option are met, then the control should flow to the step

specified in that decision option. If there is no match, then the control flows to a default step

indicated by the attribute default_option_when_automatic.

Figure 31. The decision step hierarchy

4.1.1 Modeling deterministic one-of decisions (Previously known as Case Steps)
Decision_Step can be used as a means to represent conditional selection of one and only one path
from among several alternatives. This replaces GLIF2’s conditional step class, which used a
Boolean model. The Boolean model made it cumbersome and error-prone to represent criteria
that do not have a true-or-false result (e.g., selection based on the condition “patient's age
category” has several options: neonate, infant, toddler, child, adolescence, adult, elderly).

To represent deterministic one-of, a decision step is linked to several decision options. The
strict_rule_in attribute of each decision option is used to specify a decision condition that could
be computed automatically. If a strict_rule_in evaluates to true, then the control flows to the
guideline step that is specified by that decision option’s destination.

The decision options’ criteria in a case should be mutually exclusive. However, the responsibility
of ensuring mutual exclusiveness is left to the guideline author. If these criteria are not mutually

 39

May 4, 2004 40 GLIF3.5

exclusive, and more than one decision option criteria are met, then only one decision option is
chosen, arbitrarily. The GLIF specification does not define which of the options is selected in
case of more than decision criterion being true.

Decision Step
 1

2

Option2
strict_rule_in2

Option1
strict_rule_in1

2

then

3

1 destination1

Figure 32. The way in which deterministic one-of decisions are modeled in GL

Note that the decision options are not guideline steps. When using P
for GLIF3, decision options are not graphically depicted as flowch
depicted as connectors, as shown in Figure 33.

option1.strict_rule_in1 Decision Step

Guideline Step2

option2.strict_rule_in2

default_option_when_a

option_i..condition_value_i

If strict_r

then destinatio

Guideline Step1

Guideline Step3

Figure 33. The way decision steps are graphically displayed by the Protégé GL

Guideline Step

Guideline Step
Destination2
option
option

If strict_rule_in_i

 destination_i is chosen
option3..n
default_option_when_autopmatic
Guideline Step
IF3

rotégé as an authoring tool
art nodes. Instead, they are

ule_in_i
n_i is chosen

IF authoring tool

40

May 4, 2004 41 GLIF3.5

An example of a deterministic decision step is shown in Figure 35 through Figure 38.

<decision step>

Figure 34. Deterministic one-of

algorithm is shown.

Figure 35. An example of a decis

<action step>
<patient state step>

decision step used in the Breast Mass Workup algorithm. Only part of the

ion step. This is one of the case steps shown in Figure 19.

 41

May 4, 2004 42 GLIF3.5

Figure 36. The details of the “no” option shown in Figure 35. When the expression “RecentMPC?”, shown in
Figure 35 evaluates to the condition value “No Recent MPC” control flows to the destination step “Conditions
present that could cause angina?”

 42

May 4, 2004 43 GLIF3.5

Figure 37. Deterministic decision step used in the BP Control algo

<action step>

<deterministic decision step>
<decision step>

rithm

43

May 4, 2004 44 GLIF3.5

<deterministic decision step>

<action step>

<decision step>

Figure 38. Deterministic decision step used in the prevention of bacterial endocarditis algorithm

4.1.2 Modeling non-deterministic decision Steps
Non-deterministic one-of decision steps represent a decision between guideline steps for which
the guideline does not provide deterministic selection criteria. There are many reasons for using
this construct such as when a decision cannot be represented unambiguously. The different
decision options in a non-deterministic decision step are not necessarily mutually exclusive. The
options.condition_value of a non-deterministic decision step must belong to Decision_Condition
or its subclasses. Examples of non-deterministic decision steps are shown in Figure 37 through
Figure 38.

 44

May 4, 2004 45 GLIF3.5

Ranking the decision options depends on the class of Decision_Condition. Each option contains
a degree of preference that may be modeled differently for the different types of
Decision_Conditions. The degree of preference will determine how the Decision_Conditions
will be ranked. This will assist the user in choosing among the different options. All the options
in one non-deterministic decision step must belong the same class so they can be ranked
consistently.

4.1.2.1 Utility_Choice_Step
Utility Choice step is a subclass of the Decision Step. It represents a choice step that uses the
Utility theory in deciding among several options. It contains a pointer to the decision algorithm
used to evaluate the choices. This may either be a decision analysis tree or an influence diagram.

The utility choice step has the same attributes as the decision step, but adds the decision_diagram
attribute. The options.condition_value of the utility choice step must be of class UtilityChoice.

4.1.2.2 Choices
There are 3 subclasses of the Choice class: RuleIn Choice, Weighted Choice, and Utility Choice.

Rule In Choice

RuleInChoices specify rule-in, rule-out, strict-rule-in and strict-rule-out criteria for each decision
option. These criteria help the user choose one of the decision options.

The strict-rule-in criteria rank a choice as the best among several options. For example, when
there are competing diagnoses for a disease, a pathognomonic condition would be a strict-rule-in
for the disease.

A strict rule out is analogous to an absolute contraindication. For example, “allergy to penicillin”
is a strict rule out for giving penicillin.

A strict-rule-out takes precedence over strict-rule-in when ranking options. If an option contains
both a strict-rule-in criterion and a strict-rule-out criterion, and both evaluate to true, then that
option should be the last choice.

Strict-rule-ins take precedence over rule-ins and rule-outs. The ranking of rule-ins and rule-outs
is left to the user who may use his or her clinical judgment or may develop their own ranking
schemes.

All the strict-rule-outs of the same choice are related to each other using the OR relationship
(i.e., if there are 2 rule-ins, A and B, then they are equivalent to a single rule-in stating A OR B).
Similarly, all the strict-rule-ins of the same choice are related to each other using the OR
relationship

Examples of RuleIn Choices are shown in Figure 37, Figure 39, and Figure 40.

 45

May 4, 2004 46 GLIF3.5

Option 1
(transplant)

Option 2
(hemodialysis/HD)

Option 3
(Peritoneal dialysis/PD)

RuleIns
1. Patients who prefer PD or will not go to HD
2. Patients who cannot tolerate HD
3. Patients who prefer HD but have no assistants for HD, or an

assistant cannot be trained for home HD

RuleOuts
1. Fresh intra-abdominal foreign bodies (e.g. VP shunt)
2. Peritoneal leaks
3. Body size limitations
4. Intolerance to PD volumes necessary to achieve adequate PD dose
5. Inflammatory or ischemic bowel disease
6. Abdominal wall or skin infection
7. Morbid obesity
8. Severe malnutrition
9. Frequent episodes of diverticulitis

StrictRuleOuts
1. Documented loss of peritoneal function or extensive abdominal

adhesions that limit dialysate flow
2. In the absence of a suitable assistant, a patient incapable physically

or mentally of performing PD
3. Presence of uncorrectable mechanical defects that prevent effective

PD or increase the risk of infection.

Choice Step
(Pre-ESRD evaluation)

Figure 39. RuleInChoice in pre end-stage renal disease (ESRD) Evaluation. The strict-rule-in for transplant

would be availability of a donor kidney. That automatically puts it as first choice.[23]

 46

May 4, 2004 47 GLIF3.5

Choice Step
(Antimicrobials for

primary prophylaxis for
dental, respiratory tract

Option1
Amoxicillin
(preferred)

StrictRuleIn:
True

StrictRuleOut:
anaphylactic reaction to
penicillin

Option 2
Clindamycin

Option 3
Cephalexin

Option 4
Cefadroxil

Option 5
Azithromycin

or
Clarithromycin

Option 6
Erythromycin

Figure 40. RuleInChoice in the decision on of antimicrobials for primary prophylaxis for dental, respiratory

tract or esophageal procedures.[24]

4.1.2.3 Weighted Choice
WeightedChoices contain an array of criteria, each associated with a weight. The weighted
criteria for each of the options will determine how an option will be ranked amongst the choices
presented to a user at run-time. The sum of the weights for each criterion in a choice has to
equal 1. The higher the value of a choice (from 0 to 1), the higher its rank. If a criterion is false
or unknown, it is counted as 0 or assessed as a criteria not being met.

4.1.2.4 Utility Choice
A utility choice represents a node in a decision analysis tree or an influence diagram.

4.2 Specifying decision criteria
Criteria are expressed using three_valued_criterion_expressions that are written in a superset of
Arden Syntax, called GLIF_Arden (see Section 3.8). The data items that are referenced by the
criteria are specified in the medical ontology of GLIF (see Section 2.4).

Suppose that we want to specify the decision criterion: Age > 30 year

The criterion is specified as: (now – Date_Of_Birth) > 30 year

Where:

1. now is a special time operator that returns the current time

2. Date_Of_Birth is a primitive data value retrieved from an EPR

3. “30 year” is a literal data item that matches the type of Date_Of_Birth

 47

May 4, 2004 48 GLIF3.5

4.3 Defining patient data
In the above example, PNDS is a term that is defined in the medical ontology. We will show
how this patient data item is defined in the 3-layered ontology.

Figure 41. T

Figure 41
value da
Date_of_
Date_Of_

Data item
items can
complexi
because c
a RIM su
encourage
appropria
computat

he criterion “Age > 30 year”

 shows how the criterion “Age > 30 year” is modeled in GLIF. The primitive data
te_of_birth is retrieved from the EMR using the Get_Data Action specification.
birth will be defined by the Get_Data action specification to retrieve the data from the
Birth patient Data_Item.

s are used when specifying decision criteria, as shown in Section 4.2. Patient data
 have quite complex structures depending on the RIM. This can introduce significant
ty into expression evaluation. For instance, “Latest cough” is difficult to compute
ough, as an observation, has more than one associated time stamps. Many attributes in
ch as USAM serve for documentation and retrieval purposes only. So we intend to
 users to use the Get_Data_Action action specification (see Section 5.3.4) to retrieve

tes data value(s), assign them to primitive data items and only employ primitive data in
ion.

 48

May 4, 2004 49 GLIF3.5

Another example is given in Figure 42 and Figure 43, where the criterion

PostNasal_Drip is_in Symptom

is specified using the literal data item PostNasal_Drip and the variable data item Symptom.

Figure 42. The PostNasal_Drip literal data item

Figure 43. The Symptom variable data item

 49

May 4, 2004 50 GLIF3.5

5. Describing actions

5.1 Specifying the action and parameters
See section 3.4(Action Steps).

5.2 Iterative actions (and decisions)

The Iteration_Specification class specifies information regarding the loop structure of the
iteration. Only action steps and decision steps may be iterated. The action- and decision steps
that reference the Iteration_Specification, are iterated until the abort condition or stopping
condition criteria hold. The iterations are carried out at a certain frequency, which is expressed
by an Iteration_Expression. The Iteration_Expression class is shown in Figure 44.

Different types of iteration expressions are possible. These are: frequency expression, every
expression, times expression, and discrete temporal expression table.

 50

May 4, 2004 51 GLIF3.5

Figure 44. The Iteration Expression class hierarchy

There are two types of Frequency_Expressions: Times_Expression and Every_Expression. Both
of them define the frequency at which an iteration should occur and its duration. The duration is
specified by the for attribute of the Frequency_Expression class.

 51

May 4, 2004 52 GLIF3.5

A times expression specifies that something should occur a specified number of times (the
repeat_times attribute) within a specified interval (the per attribute) (e.g., “3 times a day;”). At
execution time, this class should be mapped, or refined to a tight temporal expression.

An every expression specifies that something should occur every fuzzy duration. A fuzzy
duration is a duration that has an associated before and after uncertainty period. Any time point
within (duration-before_uncertainty, duration+after_uncertainty) is considered to be within the
limits of the fuzzy duration. For example, for a duration of 4 hours with a before uncertainty of
½ hour and an after uncertainty of 1 hour, represents a fuzzy duration interval of 3½ - 5. The
fuzzy duration also has offsets. These are used in conjunction with the every expression (see
below). Any time point within (duration-before_offset, duration+after_offset) is considered to
be within the limits of the fuzzy duration, but requires resetting of the iteration points used by
every expressions. Examples of fuzzy duration expressions are: “4 hours with window –30
minutes, + 1 hour;” and “ 5 hours with offset –1 hour, + 1 hour;”

An every expression specifies whether or not the iteration points should be reset in cases where
the iteration did not occur exactly on the fuzzy duration’s duration, but within the interval
(duration-before_uncertainty, duration+after_uncertainty). This is specified by the
reset_iteration_points Boolean. Taking birth control pills is an example of constant iteration
points, which should not be reset. A birth control pill needs to be taken every 24h, but there are
before and after windows of 12h. So even if the pill was not taken at the regular time, it can still
be taken up to 12h later. If the patient remembered missing a dose more than 12 hours after the
normal duration of the every expression, then the dose should be skipped. Iteration points are
not reset. So if the pill was first taken at 9pm it should be continued at approximately that time,
every 24 h. The every expression for this example is shown in part (a) of Figure 45.

))

Figure 4

Aspirin
hours.
before
doses a
pm. Th
(Every_Expression
 name:Take pill every 24h
reset_iteration_points: false

5. Example of Every expressions

)
name:Take pill every 5
reset_iteration_points: true

 represents an example of resetting iteration
Using an every_expression, the fuzzy duratio
and after uncertainty of 1 h. So if the first asp
re tentatively scheduled for noon, 5pm, 10 pm
en the patient should be able to take the next d

(Fuzzy Duration)

label: 24h +/- 12h
duration: 24 h
repeat_every

 (a
before_uncertainty: 12h
after_uncertainty: 12h

)
(Every_Expression

label: 5 +/- 1h
duration: 5 h
repeat_every
 (b)
 (Fuzzy Duration
before_uncertainty: 1h
after_uncertainty: 1h

 points. Aspirin should be taken every 4-6
n is specified to have duration of 5 h with
irin tablet was taken at 7am, the following

, etc. Suppose the second pill was taken at 1
ose at 7pm. This will be enabled if after the

52

May 4, 2004 53 GLIF3.5

second pill was taken, the iteration points were reset to 7 am, 1 pm, 6 pm, 11 pm, etc. The every
expression for this example is shown in part (b) of Figure 45.

A discrete temporal expression table is another type of Iteration_Expression. It specifies a list of
pairs of frequencies and durations, called atomic frequencies. For example, see patient every 5
weeks for 5 months, then, every 2 weeks for 1 month, and then every week for 1 month. The
order of rows is important. The rows are to be executed from the top of the table to its bottom.

Executing an action at irregular intervals can be either modeled as iteration or not. For example,
a visit schedule that says: “visit every 5 weeks for 5 months and then every 2 weeks for X
months” may be modeled as an iterative action, but an immunization schedule that requires
giving an immunization at times t; t+ 1 month; t+2 months would better be modeled as an action
(Immunization) that is not iterative, but instead is event triggered. The triggering events would
be temporal: 1 month after the first dose; 2 months after the first dose. Modeling the
immunization schedule as iteration is possible but is not elegant. It can be done by specifying
that a shot should be given every 1 month for 1 month, then every 2 months for 2 months, etc.

Another consideration involves maximum doses. Some medications need to be taken at 1-2 pills
every 4-5 hours, but no more than 8 pills within 24 hours. The iteration is still every 4-5 hours,
but the dose per iteration is dependent on previous doses and may be equal to zero.

Examples of an iteration specification are shown below.

1. Iterate 3 times a day for 10 days

Iteration_specification.frequency == 3 times a day for 10 days (Times Expression)

2. Iterate 3 times a day for 30 times

Iteration_Specification.frequency == 3 times a day (Times Expression)

Iteration_Specification.stopping_condition == 30 times

2. Iterate (see the doctor) every 5 weeks until week 31 after conception, then every 2 weeks

for 4 weeks, then every week until week 40.

Iteration_Specification.abort_condition == end of pregnancy

Iteration_Specification.stopping_condition == 40 weeks after conception

Iteration_Specification.frequency == every 5 weeks until 31 weeks after conception;

 every 2 weeks until 35 weeks after conception;

 every 1 week until 40 weeks after conception;

 (Discrete temporal Expression Table)

5.3 Action Specifications
The action specification model includes two types of actions: (1) guideline-flow-relevant actions,
such as calling a sub-guideline, or computing values for data; and (2) clinically relevant actions,

 53

May 4, 2004 54 GLIF3.5

such as making recommendations. Clinically relevant actions reference the medical ontology for
representations of clinical concepts such as prescriptions, laboratory test orders, or referrals.

GET OO Data Action

-expression:Guideline_Expression

-data_item: Data_Item

Figure 46. The action specification package

All action specification objects specify the details of a clinical action. The Action Specification
class is abstract. Its subclasses are programming oriented action specifications and medically
oriented action specifications.

5.3.1 Subguideline Action
This is a programming-oriented action specification, that contains the details of a high-level
action in the form of a (sub)guideline or a macro.

5.3.2 Assignment Action
This is a programming-oriented action specification. The Assignment_Action class is used to
create/instantiate a primitive data item. This data item is assigned the value resulting from the
evaluation of the expression.

 54

May 4, 2004 55 GLIF3.5

5.3.3 Generate Event Action
This is a programming oriented action specification. The Generate_Event_Action class is used

to create an event, such as “a data item was written to the EPR”.

5.3.4 Get Data Object Action
This is a programming oriented action specification. It is used to explicitly obtain the value of a

data item from the EMR or from a user and store it in a variable.

5.3.5 Get Data For GEL Action
GLIF3’s Get_Data_For_GEL_Action retrieves patient data from the EMR as HL7 RIM objects

and transforms them to query result data types. It allows a mapping to be specified from GLIF3’s

default data model, the HL7 RIM, to GEL’s data model. A guideline author can use

Get_Data_For_GEL_Action to specify that an attribute of a complex RIM class is the source of

data values for the query result, and that values of another attribute serve as the primary time in

the query result. Thus, the query result is a list of value and primary time pairs similar to Arden’s

query result data type. However, the value attribute in GEL’s query result holds a simple or a

complex GEL type. Get_Data_For_GEL_Action specifies which data item from the EMR will

serve as the source of data, and which attribute will be selected from the data item. In this way,

specific attributes of the data item can serve as the source of the data, rather than the entire data

item. For example, Get_Data_Action can retrieve all instances of Medication data items that

refer to ACE Inhibitor treatments (Figure 47). It can assign the value of their data value attribute,

which is a RIM Medication object (Figure 48), to the query result’s “value” attribute, and assign

the end time of each Medication treatment (critical_time.high) to the “primary time” attribute of

the query result elements.

 (Instance of Get_Data_For_GEL_Action)

 data_item: ACEI_Item
 attribute_to_be_assigned: data_value
 variable_name: ACEI
 primary_time: data_value.critical_time.high
 (Instance of Query_Result)

 value: (Medication instance) value: (Medication instance) …

 primary_time: 2002-01-08 primary_time: 1999-03-02

Figure 47. The Get_Data_Action and its query result that holds ACEI Medication objects data values and

their primary times. In this example, the latest query result element has the primary_time 2002-01-08.

 55

May 4, 2004 56 GLIF3.5

 (Instance of Variable_Data_Item)

{name: ACEI_Item

 concept: {(instance of Concept)

 concept_name: ACEI;

 concept_id: C0003015;

 concept_source: UMLS}

 data_model_class_id: Medication

 data_model_source_id: HL7-RIM

 data_value: {(instance of Medication)

 service_cd: ACEI concept;

 mood_cd: event;

 critical_time: {low: null;

 high: null;}…} }

Figure 48. A variable data item that defines ACE Inhibitor treatment. Attribute names are on the left,

followed by their values. Complex values are in curly braces. The ACEI data specify the appropriate UMLS

code and HL7 RIM class (Medication). The figure shows two attributes of Medication. Other attributes

include dosage_quantity, rate_quantity, and route_code.

5.3.6 Get_OO_Data_Action
GLIF3’s Get_OO_Data_Action retrieves patient data from the EMR. The expression that

specifies a query that gathers data from the ER is specified in the GELLO expression language

(See Section 3.8)

5.3.7 Medically Oriented Action
The Medically_Oriented_Action class is used to define an action that refers to a medical term.
This class is used to represent a typical guideline recommendation.

Figure 49. A medically oriented action specification that orders a chest X-ray

 56

May 4, 2004 57 GLIF3.5

6. Patient States
A Patient_State_Step is a guideline step (a node in the flowchart) that is used for two purposes.
One purpose is to serve as a label that describes a patient state that is achieved by previous steps.
This way, a guideline may be viewed as a state transition graph, where states are scenarios, or
patient states, and transitions between these states are the networks of guideline steps (excluding
patient state steps) that occur between two patient state steps. The other purpose of a patient state
step is an entry point to the guideline (e.g., patient came back to the clinic at clinical state A).

A patient state step has a criterion that describes the state of the patient who is at that patient
state. If there is a criterion that refers to a generalization (e.g., “state is not well”) it also applies
to specializations of that class (e.g., “state is fever”). The hierarchy of concepts is defined in the
medical ontology, as shown in Figure 3.

A patient state step is followed by a guideline step.

An example of a Patient_State_Step is given in Figure 51 and Figure 52.

Patient_State_Step

Aname: String
Aodidactics: Supplemental_Material_List[]
Alabel: String
Aostrength_of_evidenc:Strenght_Of_Evidence_Or_Recommendation
Apatient_state_description: Criterion
Aonext_step: Guideline_Step
Co new_encounter: Boolean
Aotriggering_events: Trigerring_Event[]

Figure 50. The Patient State Step class. The superscript A, and C indicate the level of specification that the
attribute belongs to, while o indicates an optional attribute value.

When a patient arrives at a clinic, his current state is compared to the last patient state that was
recorded for him. If he is not at that state, then the patient state steps that represent new
encounters are searched. These can be determined either by an implementation-level attribute
called "new_encounter" of type Boolean, which characterizes a patient state step or by looking at
patient state steps whose next-step is triggered by an event of type “new patient encounter”.

It is important to acknowledge the fact that a patient might not follow the guideline precisely,
and that he/she may also be treated outside the regular clinic.

 57

May 4, 2004 58 GLIF3.5

Figure 51. An example of a patient state step

 58

May 4, 2004 59 GLIF3.5

Figu
<patient state step>

re 52. A hypertensi
<branch step>

on guideline show
<decision step>
<action step>

ing transition

<synchronization
step>

s between two patient state steps

59

May 4, 2004 60 GLIF3.5

Figure 53. The consultation actions shown in this figure are executed in parallel. This is a zoom-in view of the
consultation action shown in Figure 52.

7. Parallel paths in a guideline

7.1 Branching to multiple paths
See Section 3.6 (Branch Steps).

7.2 Synchronizing from multiple paths
See Section 3.7 (Synchronization Steps).

8. Dealing with complex guidelines
The Nestable class is a superclass of Guideline and Macro. It is an abstract class. Both Guideline
and Macro are guideline model entities that can be nested. Nesting allows grouping of parts of a
guideline into modular units (subguidelines or macros). This enables partitioning the guideline
parts into manageable sized units that can be more easily comprehended. These modular units
can also be reused by other guidelines.

The details of action and decision steps of a guideline can be shown in a different guideline that
serves as a subguideline of the first guideline. The subguidelines can recursively contain other
subguidelines to specify even more details of actions or decisions.

 60

May 4, 2004 61 GLIF3.5

Macros can be used to represent patterns of domain level concepts in a single encapsulated
object. This object can be then be mapped to a guideline object containing underlying GLIF steps
(i.e., not containing macros). In this way, macros enable declarative specification of a procedural
pattern that is realized by a set of primitive GLIF steps.

Nesting is very useful for managing the complexity of guidelines. Nesting enables looking at a
guideline from a top-level view and then zooming into/out of some of its parts. Nesting is also
useful in representing a guideline in the context of other guidelines. Since nesting allows
grouping of parts of a guideline into a single unit, this is a mechanism that can allow model
extensibility and reuse of part of a guideline (defining macros), or adaptation of a guideline to a
specific institution by replacing specifications for parts of a guideline (i.e., replacing a goal with
a procedure).

8.1 Nesting decisions
Decision are nested by specifying a subguideline in the decision_detail attribute of a decision
step. This subguideline is executed before the decision criterion for that step is evaluated. The
subguideline would modify or create new variables and assign them values. The use of these
variables in the decision criteria makes the decision nested.

The connector represent the

Decision_Option.rule-in:

Patient_Cough_ACEI_Smoking_state ==
Cough_not_due_to_smoking_and_not_ACEI

>

Figure 54. A top-level view of a nested decision step (ACEI=ACE

A zoom-into view of the Decision Step shows:

<decision step

I

<patient_state_step>
nhibitor).

61

May 4, 2004 62 GLIF3.5

<branch_step>

<decision_step> <deterministic

decision_step>
<action_step>

<synch_step>

Data Item Name: Patient_Cough_ACEI_Smoking_State

Expression: Cough_not_due_to_smoking_and_not_ACEI

Figure 55. This is the detailed view of the decision step, shown in the previous figure. This subguideline
determines state of the patient in terms of his cough, smoking, and ACEI use. The leaf steps of this
subguideline assign the cough_smoking_ACEI value to a new data item named
Patient_Cough_ACEI_Smoking_State using the Assignment_Action. The data item
Patient_Cough_ACEI_Smoking_State that is created by the subguideline is used by the main decision step in
its rule-in criterion. The value is used by the decision option’s destination to select the next step of the outer
guideline.

8.2 Nesting actions

Action Steps are nested by including a Subguideline_Action type of task in the step. The
Subguideline_Action task has a subguideline attribute that contains the nested subguideline.

Figure 56 shows an example of nesting an action step, for complexity management purposes,
while Figure 57 shows an example of nesting which is used for adjusting a local procedure.

 62

May 4, 2004 63 GLIF3.5

Figure 56. Nesting of an action step, for complexity management purposes.

F

63

May 4, 2004 64 GLIF3.5

Figure 57. Nesting of an action step, for adjusting a local procedure.

9. RDF-based Syntax for GLIF
The Resource Description Framework (RDF) is an infrastructure that enables the encoding,
exchange and reuse of structured metadata. It is developed under the auspices of W3C. RDF has
an explicit model for expressing object semantics (objects, attributes). RDF uses XML
(eXtensible Markup Language) as a common syntax for the exchange and processing of.
Metadata.
The data structure (metadata) definitions of GLIF’s object model are given by an RDF Schema.
RDF can be used as a format to encode instances that conform to the RDF Schema. Figure 58(a)

 64

May 4, 2004 65 GLIF3.5

shows a class diagram that describes part of the GLIF model for the guideline class. Part (b) of
the figure shows the corresponding RDF schema. Part (c) of the figure shows an example of an
rdf guideline instance that conforms to the RDF schema shown in (b).

 65

May 4, 2004 66 GLIF3.5

<s:Class rdf:about="&a;Guideline">
<s:subClassOf rdf:resource="&a;Guideline_Model_Entity"/>

</s:Class>

<s:Property rdf:about="&a;name">

 <s:domain rdf:resource="&a;Guideline_Model_Entity"/>

 <s:range rdf:resource="&s;Literal"/

</s:Property>

<a:Guideline rdf:about="&a;Cough_INSTANCE_00068">

Guideline_Model_Entity

name: String

(c)

(a) (b)

Guideline

<a:name>Management of Chronic Cough in Immunocompetent Adults</a:name>

</a:Guideline>Figure 58. A Partial RDF schema for the GLIF model

10. Acknowledgements
We would like to thanks very much the following people who were very helpful in giving us comments
about this document and about the GLIF language that led us to changing this document and some of the
constructs of the GLFI language.

Dipl.-Ing. Florian Rissner,
Technical University of Ilmenau,
Germany,
florian.rissner@gmx.net

Carol Broverman PhD
Director, Clinical Informatics
Fast Track Systems
San Mateo, CA
cbroverman@fast-track.com

Micael Kahn MD, PhD
Vice President Medical Informatics
Fast Track Systems
San Mateo, CA 94403
mkahn@fast-track.com

 66

mailto:florian.rissner@gmx.net
mailto:cbroverman@fast-track.com

May 4, 2004 67 GLIF3.5

A. Appendix A

1. Macros

A macro is a special class with attributes that define information needed to instantiate a set of
underlying GLIF steps. Macros can be used to represent patterns of domain-level concepts.
Macro steps benefit authoring, visual understanding, and execution of guidelines.

The Macro class is an abstract class. A new type of macro is defined by creating a subclass of the
macro class. The attributes of this subclass are then mapped to attributes of the underlying
patterns of GLIF steps to generate the representation of the macro in GLIF steps. The schema
attribute of the Macro class describes the mapping of the Macro to GLIF steps. A schema
language is still being developed.

Figure 59. The Macro package

 67

May 4, 2004 68 GLIF3.5

An Arden Macro, like an Arden MLM, has four sub-slots: evoke, condition, and action, that
correspond to the evoke, logic and action slots of the knowledge slot of an Arden MLM, and the
next_step attribute that links it to the next guideline step. An example of an Arden macro and its
expansion is shown in

Figure 60 and Figure 61.

 68

May 4, 2004 69 GLIF3.5

Figure 60. An example of an MLM Macro used to alert a physician if the patient has a high albumin value

 69

May 4, 2004 70 GLIF3.5

 70

May 4, 2004 71 GLIF3.5

Figure 61. An expansion of the MLM macro from

Figure 60 into primitive GLIF steps.

Risk Assessment Macro
A Risk Assessment Macro has three parts, or “steps”:

1. Collecting patient data - Data that is needed for calculating risk is collected through
the Conditional_Data_List_Macro. The data may be obtained conditionally based on
values of previously collected data. In the example shown in Figure 62, demographics
data is obtained for all patients. Menstrual history is obtained only if the condition
adult female is true. The Conditional_Data_List_Macrois modeled using an ordered
list of Get_Conditional_Data macros. This macro contains a condition and a list of
patient data items that must be obtained.

 71

May 4, 2004 72 GLIF3.5

2. Computing risk - The risk calculations are performed through the Risk Calculation
Macro. This macro has to be defined. It would contain definitions of variables that are
to be created and the calculation of those variables through Assignment_Actions.

3. Recommendations based on risk - Recommendations based on computed risk and
individual risk factors are provided through the
Recommendation_Based_On_Risk_Macro. Recommendations are provided only if an
associated condition is true. In the example shown in Figure 63, the
Exercise_recommendation is provided only to high-risk persons. Thus, the
Recommendations_Macro is structurally similar to the Get_Conditional_data_macro.

Figure 62 and Figure 63 show an example of a risk assessment macro and its expansion.

Figure 62. Risk Assessment Macro based on age, gender, menstrual history, and pregnancy history. This risk
assessment macro recommends exercise for risk > 70%, maintaining life style for risk < 30%, and estrogen
treatment for post menopausal women.

 72

May 4, 2004 73 GLIF3.5

Figure 63. An expansion of the Risk Assessment Macro shown in Figure 62 into its primitive GLIF steps.

2. Views of a guideline

For each guideline default viewers may be specified. Since different users may be interested in
different parts of a large, complex guideline, differential display capability is supported. This
capability is provided through the use of filters that collapse segments of the guideline into a
default view of the guideline customized to a given user, situation, etc. Default viewers are
specified using a View_Specification.

 73

May 4, 2004 74 GLIF3.5

A capability to provide multiple views of the same guideline was added in GLIF3. Since
different users may be interested in different parts of a large, complex guideline, differential
display capability is supported. This capability is provided through the use of filters that collapse
segments of the guideline into a default view of the guideline customized to a given user,
situation, etc.

Figure 64. A breast cancer guideline viewed by a radiation oncologist

If a guideline consists of subguidelines, each of these subguidelines may be visualized as a
triangle, with one step at the highest level and multiple steps at the lowest level. That is, the
width of the triangle is proportional to the number of steps at that level of nesting. The top of the
triangle has less detail and therefore has a smaller number of steps. The bottom of the triangle
has more detail and therefore has a larger number of steps.

A given filter (e.g., MD_Radiation_Oncologist) will define the default level of nesting/Zoom-in
for each of the subguidelines. It will be up to the guideline author to define the subguidelines in
an appropriate way (e.g., to avoid too many steps per screen for a given viewer) and to define the
level of nesting required for each given subguideline. In the above example, suppose that a breast

 74

May 4, 2004 75 GLIF3.5

cancer guideline has four subguidelines. A Radiation Oncologist looking at the guideline may
see, by default, relatively little detail about screening, diagnosis and surgery. He will see a great
deal of detail regarding radiation therapy, however. A surgeon looking at the same guideline may
see little detail on screening and diagnosis, a lot of detail on surgery and little detail on radiation
therapy.

The status quo of specialty bodies publishing guidelines may change as multi-specialty
organizations publish multi-specialty documents. Guidelines may become quite complex.
Much of medicine is multi-disciplinary in nature. The distinction between specialties is artificial.
For example, the distinction between cardiology and nursing is for the convenience of
practitioners. The patient suffering a myocardial infarction (heart attack) is likely to require care
from both a cardiologist and a nurse. The information needs of the cardiologist, however, are
very different from those of the nurse. The purpose of default views in GLIF should be to reveal
to the cardiologist only the relevant portions of the myocardial infarction guideline, which may
be different from that shown to the nurse.

Views are default filters through which we interact with the guideline. By definition, views do
not change guideline logic (e.g. if an RN should do something different from an MD, this should
be represented in the guideline logic, not in the view). Although we anticipate that the most
common use of views will be user and/or location, there may be other relevant filters (e.g.
situation such as routine vs. disaster). The view class is a guideline entity. Alternatively, the view
could have been modeled as an enumerated type attribute. The main purpose of this class is to
allow differential display in the simplest possible way.

The view specification was chosen to be at the level of guideline entities and not at the attribute
level. We may later choose to make attributes (and not entire guideline entities) visible or
invisible to some users.

The BNF notation for filter expressions:

term: filter_type = domain_ontology_filter_instance

filter_expression: term | expression binary_operator expression | unary_operator expression |
(expression)
binary_operator: OR | AND

unary_operator: NOT

filter_type: USER | LOCATION

domain_ontology_filter_instance: MD | RN | ...

An example of a view specification is shown in Figure 65 and Figure 66.

 75

May 4, 2004 76 GLIF3.5

Figure 65. Specifying views: a guideline might call for a breast biopsy. Lets say that all MDs want to see that
a breast biopsy is called for, however, surgeons want to know what kind of biopsy is needed, incisional or
excisional.

 76

May 4, 2004 77 GLIF3.5

 77

May 4, 2004 78 GLIF3.5

Figure 66. How different users view the guideline. This example shows how nesting deals with views. If the
viewer is an MD he sees the top-level view of the action step Biopsy. He can zoom into the action-detail
subguideline, to see that incisional or excisional biopsies can be performed. An MD_Surgeon will directly see
the zoomed-in view of biopsy directly, showing the decision that is made between incisional and excisional
biopsy.

3. Specifying events and exceptions

Figure 67. Events and Exceptions class diagram

Action- and decision steps have an attribute, called triggering_events, which specify the events
that trigger the start of the step, and the associated earliest and latest times after which the step
should be started. A step may contain several triggering events. Any one of the triggering events
that occur can trigger the step. If more than one of these triggering events occur at the same time,
then the highest priority event is chosen to trigger the step, as specified by the priority attribute
of the Triggering Event class. Different event types are defined: end of a previous guideline step,
patient arrival, patient data availability, and temporal events, such as a certain point of time has
arrived.

The links that connect the guideline steps of an algorithm (i.e., the “next step” attribute of action
steps, patient state steps and synchronization steps, the “default next step” of decision steps, the
“branches” of branch steps, and the “destination” of decision options) represent triggering events
of type “end of previous step” that trigger the guideline step that is adjacent to the arrowhead of
the link. There is no need to explicitly specify them as triggering events unless earliest or latest

 78

May 4, 2004 79 GLIF3.5

start times should be specified. [What is the priority of “Next_Step” that is not explicitly
specified?]

If an action step has a start_time constraint, then it is applied to all of the action’s tasks.

Examples of events are shown in Figure 68.

Action and decision steps, as well as guidelines, have an attribute, called exceptions, which
specifies the exceptions that should be checked during the execution of the step. The exceptions
are of the class GLException. This class specifies the exception-event that should be checked for,
a (guarding) condition and a next step. If the exception event occurs and the condition holds,
then we terminate the step associated with the exception, and move on to the next step that is
defined by the exception.

Any of the exceptions that occur can stop the execution of the current step and pass control to
another step. [problem: Again, control can go outside branch and synchronization] In cases
where several exceptions are defined (each with its own next_step), their priorities are compared,
and the highest priority exception is chosen to trigger the step. This way, the control is passed to
the guideline step that is specified by the exception that has the highest priority.

An example of an exception is shown in Figure 69.

 79

May 4, 2004 80 GLIF3.5

)

F
in
a

(1)

igure 68. Examples of triggering_
voked by one of two events: (a) a

t least 8 minutes after hemoglobin
(2
(3)

events. 1) hemoglobin data is available; 2) 2 am arrived; 3) Action Step2 is
t least 2 seconds and not more than 5 seconds after Action Step1 ended; (b)
 data is available.

 80

May 4, 2004 81 GLIF3.5

Figure 69. An example of an exception. When radiation therapy is conducted, you check for the exception of

anemia (hemoglobin result with a value of < 11). If it occurs then you go to Step3. If it doesn't you finish

radiation therapy and go to step2.

 81

May 4, 2004 82 GLIF3.5

B. Appendix B:

BNF for GEL: GLIF Expression Language

 NON-TERMINALS

 CompilationUnit ::= (StatementOrExpression (<EOL>)+)* <EOF>
 StatementOrExpression ::= Assignment
 |FunctionStatement
 |LetStatement
 |IfStatement
 |ConcludeStatement
 |Expression
Statement ::=Assignment
 |FunctionStatement
 |LetStatement
 |IfStatement
 |ConcludeStatement
Assignment ::= Id <ASSIGN> Expression <SEMICOLON>
LetStatement ::=<LET> Id <BE> StringConst <SEMICOLON>
FunctionStatement ::= <ID> "(" (ArgumentList)? ")" <SEMICOLON>
IfStatement ::= IF> Expression <THEN> Statement (<ELSE> Statement)? <ENDIF> <SEMICOLON>
ConcludeStatement ::= <CONCLUDE> Expression <SEMICOLON>
Expression::= ConditionalExpression
ConditionalExpression ::= ListAppendExpression
ListAppendExpression ::= List <COMMA> Expression
 | WhereExpression (<MERGE> WhereExpression)?
 WhereExpression::= OrExpression (<WHERE> OrExpression)?
 OrExpression ::=
 ConditionalAndExpression (<OR> ConditionalAndExpression | <XOR> ConditionalAndExpression)*
 ConditionalAndExpression ::= ComparisonExpression (<AND> ComparisonExpression)*
 |<AT_LEAST> Number <OF> "(" ArgumentList ")"
 ComparisonExpression ::= ConcatExpression (<EQUAL> ConcatExpression | <NOTEQUAL> ConcatExpression |

 <LT> ConcatExpression | <LEQUAL> ConcatExpression |
 <GT> ConcatExpression | <GEQUAL> ConcatExpression | <IS_WITHIN> <SAME_DAY_AS>
ConcatExpression | <IS_WITHIN> <PAST>
 ConcatExpression | <IS_WITHIN> ConcatExpression (<TO> ConcatExpression | <PRECEDING>
ConcatExpression | <FOLLOWING>
 ConcatExpression | <SURROUNDING> ConcatExpression) | <IS_BEFORE> ConcatExpression |

 <IS_AFTER> ConcatExpression | <IS_IN> ConcatExpression | <OCCURS_AT> ConcatExpression |
 <OVERLAPS> ConcatExpression)*

ConcatExpression ::= AddExpression (<CONCAT> AddExpression)*
AddExpression::=
MultiplyExpression (<MINUS> MultiplyExpression | <PLUS> MultiplyExpression)*
MultiplyExpression ::= PowerExpression (<TIMES> PowerExpression | <DIVIDE> PowerExpression)*
 PowerExpression ::= B4AfterExpression (<POWER> PowerExpression)*

 82

May 4, 2004 83 GLIF3.5

 B4AfterExpression ::= UnaryExpression (<BEFORE> UnaryExpression | <AFTER> UnaryExpression)*
UnaryExpression
 ::=UnaryMinus
 |UnaryPlus
 |MinusDuration
 |PlusDuration
 |<NOT> UnaryExpression
 |<FIRST> UnaryExpression
 |<LAST> UnaryExpression
 |<LATEST> UnaryExpression
 |<EARLIEST> UnaryExpression
 |<ANY_OF> "(" ArgumentList ")"
 |<ALL_OF> "(" ArgumentList ")"
 |<IS_NULL> UnaryExpression
 |<IS_BOOLEAN> UnaryExpression
 |<IS_UNKNOWN> UnaryExpression
 |<IS_NUMBER> UnaryExpression
 |<IS_TIME> UnaryExpression
 |<IS_DURATION> UnaryExpression
 |<IS_STRING> UnaryExpression
 |<IS_LIST> UnaryExpression
 |<TIME_OF> UnaryExpression
 |<EXTRACT_YEAR> UnaryExpression
 |<EXTRACT_MONTH> UnaryExpression
 |<EXTRACT_DAY> UnaryExpression
 |<EXTRACT_HOUR> UnaryExpression
 |<EXTRACT_MINUTE> UnaryExpression
 |<EXTRACT_SECOND> UnaryExpression
 |<EXTRACT_DATE> UnaryExpression
 |Duration <AGO>
 |Duration <FROM_NOW>
 |PrimaryExpression
 UnaryMinus ::= "(" <MINUS> Number ")"
 UnaryPlus ::= "(" <PLUS> Number ")"
 MinusDuration ::= "(" <MINUS> Duration ")"
 PlusDuration ::= "(" <PLUS> Duration ")"
 PrimaryExpression ::= Literal
 |Function
 |Id
 |"(" Expression ")"
 | It
 It ::= <IT>
 Id ::= <ID> ("." <ID>)*
 Duration ::= <NUMBER> (<YEAR> | <MONTH> | <WEEK> | <DAY> | <HOUR> | <MINUTE> |

 <SECOND>)
 Function
 ::=
 <ID> "(" (ArgumentList)? ")"
 ArgumentList
 ::=
 Expression ("," Expression)*
 Interval ::=
 <INTERVAL> ("(" | "[") ((<NUMBER> | <MINUS_INFINITY>) "," (<NUMBER> |

<INFINITY>) (")" | "]") | UnaryMinus "," UnaryMinus (")" | "]") | UnaryMinus "," (
 <NUMBER> | <INFINITY>) (")" | "]") |

 83

May 4, 2004 84 GLIF3.5

(Date "," Date) (")" | "]") | (Duration | MinusDuration) "," (Duration | MinusDuration) (")" |
"]"))

 ListElement ::=Literal |Id
 List ::= ("{" "}" | "{" ListElement (<COMMA> ListElement)* "}")
 StringConst ::= <STRING>
 Number ::= <NUMBER> Id
 |<NUMBER>
 Date::=<DATE>
 |<NOW>
 ComplexType ::=
 <STRUCT> <ID> "{" (<EOL>)+ (<ID> ":=" Literal <SEMICOLON> (<EOL>)+)+ "}"
 Literal ::= StringConst
 |Duration
 |Number
 | Date
 |Interval
 |List
 |<TRUE>
 |<FALSE>
 |<UNKNOWN>
 | ComplexType

 Tokens/Terminals

TOKEN : /* RESERVED WORDS */
{
 < BE: "be" >
| < BOOLEAN: "boolean" >
| < DATE1: "date" >
| < DURATION: "duration" >
| < FALSE: "false" >
| < INFINITY: "infinity" >
| < MINUS_INFINITY: "-infinity" >
| < IT: "it" >
| < LET: "let" >
| < NOW: "now" >
| < NULL: "null" >
| < RES_NUMBER: "number" >
| < RES_STRING: "string" >
| < TIME: "time" >
| < TRUE: "true" >
| < UNKNOWN: "unknown" >
| < STRUCT: "struct" >
}

TOKEN : /* OPERATORS */
{
 < COMMA: "," >
| < WHERE: "where" >
| < OR: ("|" | "or") >
| < XOR: ("*|" | "xor") >
| < AND: ("&" | "and") >
| < NOT: ("!" | "not") >
| < EQUAL: ("==" | "=") > // here to next comment -- same precedence

 84

May 4, 2004 85 GLIF3.5

| < NOTEQUAL: ("!=" | "<>") >
| < LT: "<" >
| < LEQUAL: "<=" >
| < GT: ">" >
| < GEQUAL: ">=" >
| < IS_WITHIN: "is within" >
| < TO: "to" >
| < PRECEDING: "preceding" >
| < FOLLOWING: "following" >
| < SURROUNDING: "surrounding" >
| < PAST: "past" >
| < SAME_DAY_AS: "same day as" >
| < BEFORE: "before" >
| < AFTER: "after" >
| < IS_BEFORE: "is " < BEFORE > >
| < IS_AFTER: "is " < AFTER > >
| < IS_IN: ("is ")? "in" >
| < OCCURS_AT: "occurs at" > // end same precedence
| < IS_NULL: "is " < NULL > >
| < IS_BOOLEAN: "is " < BOOLEAN > >
| < IS_UNKNOWN: "is " < UNKNOWN > >
| < IS_NUMBER: "is number" >
| < IS_TIME: "is " < TIME > >
| < IS_DURATION: "is " < DURATION > >
| < IS_STRING: "is string" >
| < IS_LIST: "is list" >
| < CONCAT: "||" | "concat" >
| < PLUS: "+" >
| < MINUS: "-" >
| < TIMES: "*" >
| < DIVIDE: "/" >
| < POWER: ("**" | "^") >
| < AGO: "ago" >
| < FROM_NOW: "from now" >
| < YEAR: "years" | "year" >
| < MONTH: "months" | "month" >
| < WEEK: "weeks" | "week" >
| < DAY: "days" | "day" >
| < HOUR: "hours" | "hour" >
| < MINUTE: "minutes" | "minute" >
| < SECOND: "seconds" | "second" >
| < EXTRACT_YEAR: "extract " < YEAR > >
| < EXTRACT_MONTH: "extract " < MONTH > >
| < EXTRACT_DAY: "extract " < DAY > >
| < EXTRACT_HOUR: "extract " < HOUR > >
| < EXTRACT_MINUTE: "extract " < MINUTE > >
| < EXTRACT_SECOND: "extract " < SECOND > >
| < EXTRACT_DATE: "extract " < DATE1 > >
| < ANY_OF: "any of" >
| < ALL_OF: "all of" >
| < LAST: "last" >
| < FIRST: "first" >
| < INTERVAL: "interval" >
| < AT_LEAST: "at least" >
| < OF: "of" >
| < EVERY: "every" >

 85

May 4, 2004 86 GLIF3.5

| < OVERLAPS: "overlaps" >
| < LATEST: "latest" >
| < EARLIEST: "earliest" >
| < MERGE: "merge" >
| < TIME_OF: "time of" >
}

TOKEN : /* STATEMENTS */
{
 < IF: "if" >
| < THEN: "then" >
| < ELSE: "else" >
| < ENDIF: "endif" >
| < CONCLUDE: "conclude" >
| < ASSIGN: ":=" >
}

TOKEN : /* IDENTIFIERS -- VARIABLES OR FUNCTION NAMES */
{
 < ID: ["a"-"z","A"-"Z"] (["a"-"z","A"-"Z","0"-"9"] | "_" (["a"-"z","A"-"Z","0"-"9"])+)* ("." ["a"-"z","A"-"Z"]
(["a"-"z","A"-"Z","0"-"9"] | "_" (["a"-"z","A"-"Z","0"-"9"])+)*)* >
}

TOKEN : /* LITERALS */
{
 < STRING: "\""(~["\"", "\n", "\r"])*"\"" >
| < NUMBER:
 (["0"-"9"])* "." (["0"-"9"])+ (<EXPONENT>)? (["l","L","f","F"])?
 |(["0"-"9"])+ <EXPONENT> (["l","L","f","F"])?
 |(["0"-"9"])+ >
| < EXPONENT: ["e","E"] (["+","-"])? (["0"-"9"])+ >
| < DATE: ["0"-"9"]["0"-"9"]["0"-"9"]["0"-"9"]"-"["0"-"9"]["0"-"9"]"-"["0"-"9"]["0"-"9"]
 ("T"["0"-"9"]["0"-"9"](":"["0"-"9"]["0"-"9"](":"["0"-"9"]["0"-"9"]("."(["0"-"9"])+)?("Z" | <DIFF>)?)?)?)?
>
| < DIFF: "+"["0"-"9"]["0"-"9"]":"["0"-"9"]["0"-"9"]
 |"-"["0"-"9"]["0"-"9"]":"["0"-"9"]["0"-"9"] >
}

Arden operators not supported by GEL

operator description Reason for not supporting

Sort time Sorts a list by primary time Could now be supported

Sort data Sorts a list by value Function sortAttribute ?

Exist(s) Checks if a list is not empty Could be supported as an

operator // isEmpty is a function

Count Returns the number of Could be supported

 86

May 4, 2004 87 GLIF3.5

elements in a list

minimum Returns the smallest value

from items in a list of

identical types

Function minimumAttribute ?

maximum Returns the largest value from

items in a list of identical

types

Function maximumAttribute ?

Any Returns true if any of the items
in a list is true

AnyAttribute?

All Returns true if all of the items

in a list are true

AllAttribute?

No returns true if all the items in

a list are false

NoAttribute ?

Element [index] Returns the i-th element from

a list

Could be supported.

primary time is maintained

index latest Could now be supported

index earliest Could now be supported

index minimum

index maximum

reverse Reverse order of elements in a

list, maintaining primary_time

Can be supported

minimum ... from

maximum from

first ... from Could now be supported

last ... from Could be supported

 87

May 4, 2004 88 GLIF3.5

latest ... from Could now be supported

earliest ... from Could now be supported

Index minimum ...

from

index maximum ...

from

first .. from Could be supported

last .. from Could be supported

interval Returns the difference

between the primary times of

succeeding items in a list

Could now be supported

Formatted with Will not be supported in GEL

Matches pattern Will not be supported in GEL

SUM Will not be supported in GEL

AVERAGE Will not be supported in GEL

MEDIAN Will not be supported in GEL

Stddev Will not be supported in GEL

variance Will not be supported in GEL

Extract characters Will not be supported in GEL

Seqto generates a list of integers in

ascending order

Will not be supported in GEL

nearest... from Will not be supported in GEL

index nearest ... from Will not be supported in GEL

slope Will not be supported in GEL

increase list of differences between
successive items in a list

Will not be supported in GEL

 88

May 4, 2004 89 GLIF3.5

decrease Will not be supported in GEL

% increase Will not be supported in GEL

% decrease Will not be supported in GEL

Numeric functions Will not be supported in GEL

synonyms Will not be supported in GEL

Operators that exist in GEL but not in Arden Syntax:

Unary: from now, is unknown

Binary: overlaps, xor, |* , is a, is-a, occur/occurs/occurred at, at least...of

from now
In Arden, you can refer to the time of an event/occurrence in the past by saying "two days ago".
But there is no similar syntax for referring to the time of a future event. "from now" was added
so that we can say "[do x] two days from now".

is unknown
Testing if something is null is not the same thing as testing if it is unknown. If I have a data item
that has not been initialized or assigned a value, it evaluates to null (e.g. if someone attempts to
use the value of a data item without first getting it from the patient record or a physician). This is
something that can be tested by Arden. If we want to note that I don't know whether the result of
a logical expression is true or false then we can assign the value "unknown" to a variable
representing the results of the expression. This variable has a value ("unknown") and is therefore
not null.

overlaps
“overlaps” is used for comparing intervals (time or other intervals). So for example, [3:5]
overlaps [2:4] would evaluate to true but [3:5) overlaps [5:9] would evaluate to false.

xor, |*
A xor B means ((A or B) and not (A and B))
|* is a synonym for exclusive or (xor).

at least...of

 89

May 4, 2004 90 GLIF3.5

The “at least...of” operator allows us to express very basic existential/universal quantification
(i.e., "at least 1 of ... " is equivalent to "there exists ..." and "not (at least 1 of (not...))" is
equivalent to "for all ..."). It also allows expressing "k of n" criteria.

occur/occurs/occurred at
"occur/occurs/occurred at" is synonymous with Arden's "occur/occurs/occurred equal" operator
and would be evaluated exactly the same way. It just seemed like it would be clearer to use it in
some situations.

GEL Functions used by GLIF

1. isEmpty that accepts a List as a parameter and returns TRUE if the list is empty (i.e., contains no
elements, or contains elements that are all empty) and FALSE otherwise.
2. selectAttribute accepts a complex type as an argument and selects an attribute out that complex
type.
3. selectAttributeFromList accepts a list of complex objects as an argument. It then returns a list
whose elements are the selected attribute of each element in the argument list. Unlike Select_Action, it
returns the value only, without maintaining timestamps.
4. containsValuesTimeStamped accepts two list arguments, where the second contains timestamps
(what Get_Data returns) and the first one does not (what Get_Knowledge returns). The function returns a
list of Booleans of length equal to the length of the second argument of the function. The Booleans take a
True value if in that position of the second argument of the function there exists a value that is contained
in the first argument of the function.
5. containsValues accepts two list arguments, both without timestamps. The function returns
a list of Booleans of length equal to the length of the second argument of the function. The
Booleans take a True value if in that position of the second argument of the function there exists
a value that is contained in the first argument of the function.

 90

May 4, 2004 91 GLIF3.5

The GLIF Expression Language (GEL)

Types supported by GEL are listed below and expressions involving constants of these types are provided as
examples of how to write valid expressions in GEL. A variable in GEL can be assigned a value of any one of the
types described below:

 Number (real numbers)
 String
 Extended Boolean (true, false, unknown)
 Absolute Date and Time
 Duration
 List
 Numeric Interval
 Duration Interval
 Absolute Date and Time Interval

Number

Operations supported on numbers include comparisons, addition, subtraction, multiplication, division,
exponentiation, unary plus, and
unary minus. A number in GEL is a floating point/real number by default. Use of unsupported operators with
numerical values is an error (causes a type mismatch exception to be raised).

Unary operators:

+
Description: unary plus operator
Sample expression: (+3)
Returns: 3
Note: the parentheses are required

-
Description: unary minus operator
Sample expression: (-50)
Returns: -50
Note: the parentheses are required

is number
Description: checks type of argument and returns true if it is a number
Sample expression: is number 225
Returns: true
Sample expression: is number “hey”
Returns: false

Binary operators:

+
Description: addition operator
Sample expression: 2 + 3
Returns: 5

-
Description: subtraction operator
Sample expression: 2 - 3

 91

May 4, 2004 92 GLIF3.5

Returns: -1

*
Description: multiplication operator
Sample expression: 50 * (-3)
Returns: -150

/
Description: division operator
Sample expression: 180 / 6
Returns: 30
Sample expression: 22 / 7
Returns: 3.142857142857143

^ or **
Description: exponentiation operator
Sample expression: 2 ^ 5
Returns: 32
Sample expression: 3 ** 6
Returns: 729
Sample expression: 2 ^ (-4)
Returns: 0.0625

<
Description: less than operator
Sample expression: 5 < 4
Returns: false

>
Description: greater than operator
Sample expression: (-9) > (-18)
Returns: true

<=
Description: less than or equal to operator
Sample expression: 51 <= 51
Returns: true

>=
Description: greater than or equal to operator
Sample expression: 200 >= 165
Returns: false

= or ==
Description: equality operator
Sample expression: 20 == 12
Returns: false
Sample expression: 1 = 1
Returns: true

!= or <>
Description: inequality operator
Sample expression: 20 <> 12
Returns: true
Sample expression: 1 != 1
Returns: false

 92

May 4, 2004 93 GLIF3.5

Ternary operators:

is within … to …
Description: checks that first argument is in the inclusive range defined by the second and third
arguments
Sample expression: 5 is within 4 to 5
Returns: true
Sample expression: 10 is within 2 to 9
Returns: false

String

Operations supported on strings include concatenation and lexicographic comparisons. Use of unsupported
operators with string values is an error (causes a type mismatch exception to be raised).

Unary operators:

is string
Description: checks type of argument and returns true if it is a string
Sample expression: is string 225
Returns: false
Sample expression: is string “hey”
Returns: true

Binary operators:

||
Description: concatenation operator
Sample expression: “hello ” || “world”
Returns: “hello world”

<
Description: less than operator (checks whether the 1st argument lexicographically precedes the 2nd
argument)
Sample expression: “a” < “aa”
Returns: true
Sample expression: “d” < “b”
Returns: false

>
Description: greater than operator (checks whether the 1st argument lexicographically follows the 2nd
argument)
Sample expression: “yy” > “ab”
Returns: true

<=
Description: less than or equal to operator (checks whether the 1st arg. lexicographically precedes or
equals the 2nd)
Sample expression: “cd” <= “cd”
Returns: true

>=
Description: greater than or equal to operator (checks whether the 1st arg. lexicographically follows or
equals the 2nd)
Sample expression: “zed” >= “zee”

 93

May 4, 2004 94 GLIF3.5

Returns: false

= or ==
Description: equality operator
Sample expression: “why” == “not”
Returns: false

!= or <>
Description: inequality operator
Sample expression: “why” <> “not”
Returns: true

Ternary operators:

is within … to …
Description: checks that first argument is in the inclusive range defined by the second and third
arguments
Sample expression: “aa” is within “a” to “b”
Returns: true
Sample expression: “c” is within “cc” to “ea”
Returns: false

4. Extended Boolean

Extended booleans in the expression language describe a 3-valued logic (true, false, and

unknown). Operations on extended booleans include logical ands, ors, xors, etc. Use of

unsupported operators with extended boolean values is an error (causes a type mismatch

exception to be raised).

Unary operators:

is boolean
Description: checks type of argument and returns true if it is an extended boolean
Sample expression: is boolean unknown
Returns: true
Sample expression: is boolean 0
Returns: false

is unknown
Sample expression: is unknown true
Returns: false
Sample expression: is unknown false
Returns: false
Sample expression: is unknown unknown

 94

May 4, 2004 95 GLIF3.5

Returns: true

not or !
Description: logical not
Sample expression: not true
Returns: false
Sample expression: ! false
Returns: true
Sample expression: not unknown
Returns: unknown

any of
Description: returns true if any of the logical expressions in its argument evaluates to true. Expects a

comma separated “list” of logical expressions as its argument.
Sample expression: any of (3>4, 67 < 99, true == true, true xor false)
 Note, equivalent to: any of (false, true, true, true)
Returns: true

all of
Description: returns true if all of the logical expressions in its argument evaluate to true. Expects a

comma separated “list” of logical expressions as its argument.
Sample expression: all of (3>4, 67 < 99, true == true, true xor false)

Note, equivalent to: all of (false, true, true, true)
Returns: false

Binary operators:

= or ==
Description: equality operator
Sample expression: true == unknown
Returns: false

!= or <>
Description: inequality operator
Sample expression: false != unknown
Returns: true

and or &

Description: logical and

Sample expression: true and true
Returns: true
Sample expression: true and false
Returns: false
Sample expression: true and unknown
Returns: unknown
Sample expression: false & false
Returns: false
Sample expression: false & unknown
Returns: false
Sample expression: unknown & unknown
Returns: unknown

or or |

 95

May 4, 2004 96 GLIF3.5

Description: logical or

Sample expression: true or true
Returns: true
Sample expression: true or false
Returns: true
Sample expression: true or unknown
Returns: true
Sample expression: false | false
Returns: false
Sample expression: false | unknown
Returns: unknown
Sample expression: unknown | unknown
Returns: unknown

xor or *|
Description: exclusive or

Sample expression: true xor true
Returns: false
Sample expression: true xor false
Returns: true
Sample expression: true xor unknown
Returns: unknown
Sample expression: false *| false
Returns: false
Sample expression: false *| unknown
Returns: unknown
Sample expression: unknown *| unknown
Returns: unknown

The following binary operator expects a number followed by a comma-separated list of

logical expressions:

at least … of …
Description: returns true if the number of logical expressions in its right argument that evaluate to true

equal or exceed its numeric argument.
Sample expression: at least 2 of (3>4, 67 < 99, true == true, true xor false)

Note, equivalent to: at least 2 of (false, true, true, true)
Returns: true
Sample expression: at least 5 of (3>4, 67 < 99, true == true, true xor false)

Note, equivalent to: at least 5 of (false, true, true, true)
Returns: false

Absolute Date and Time

Absolute dates and times and operations on them are defined with respect to a Gregorian

calendar. Operations on absolute dates and times include comparisons, subtraction, etc. Use of

 96

May 4, 2004 97 GLIF3.5

unsupported operators with absolute date and time values is an error (causes a type mismatch

exception to be raised). An absolute date and time value that does not end in a Z for universal

coordinated time (UTC) or in a +/- hh:mm offset is assumed to be defined in local time. Note

that the expression now yields the current time on the particular system running an interpreter for

GEL.

Unary operators:

is time

Description: checks type of argument and returns true if it is an absolute date and time

Sample expression: is time 1999-03-04T03:30:45.742-03:00
Returns: true
Sample expression: is time 2000-09-12
Returns: true
Sample expression: is time now
Returns: true

Sample expression: is time 23
Returns: false

extract date

Description: extracts the date portion of the argument and returns it as an absolute date

and time in local time

Sample expression: extract date 1998-03-04T03:30:45.742+05:30
Returns: 1998-03-04

Sample expression: extract date now (assuming now is 2000-10-03T17:59:10.240-04:00)
Returns: 2000-10-03

extract year

Description: extracts the year portion of an absolute date and time

Sample expression: extract year 1998-03-04T03:30:45.742-03:00
Returns: 1998

extract month

 97

May 4, 2004 98 GLIF3.5

Description: extracts the month portion of an absolute date and time

Sample expression: extract month 2001-11-05
Returns: 11

extract day

Description: extracts the day of the month from an absolute date and time

Sample expression: extract day 1950-12-25
Returns: 25

extract hour

Description: extracts the hour of the day from an absolute date and time

Sample expression: extract hour 1960-10-01T03:04:30
Returns: 3

extract minute

Description: extracts the number of minutes past the hour from an absolute date and

time

Sample expression: extract minute 1960-10-01T03:04:30
Returns: 4

extract second

Description: extracts the number of seconds past the hour from an absolute date and

time

Sample expression: extract second 1960-10-01T03:04:30
Returns: 30

Binary operators:

-
Description: subtract one absolute date and time from another to produce a duration in seconds
Sample expression: 2000-03-01T00:00:00 - 2000-02-01T00:00:00
Returns: 2505600 seconds

occurs at
Description: checks that first argument and the second argument are equal
Sample expression: 2000-03-10T05:04:03 occurs at 2000-03-10T12:55:43

 98

May 4, 2004 99 GLIF3.5

Returns: false
Sample expression: 2000-03-10T00:00:00 occurs at 2000-03-10T23:59:59
Returns: false
Sample expression: 2000-03-10T05:04:03 occurs at 2000-03-10T05:04:03
Returns: true

is within same day as
Description: checks that first argument and the second argument occur on the same day (a new day
begins at midnight)
Sample expression: 2000-03-10T05:04:03 is within same day as 2000-03-10T12:55:43
Returns: true
Sample expression: 2000-03-10T00:00:00 is within same day as 2000-03-10T23:59:59
Returns: true
Sample expression: 2001-03-10T05:04:03 is within same day as 2000-03-10T12:55:43
Returns: false

is before
Description: determines whether one date occurs before another
Sample expression: 2000-03-01T00:00:00 is before 2000-02-01T00:00:00
Returns: false

is after
Description: determines whether one date occurs before another
Sample expression: 2000-03-01T00:00:00 is after 2000-02-01T00:00:00
Returns: true

<
Description: less than operator (equivalent to is before)

>
Description: greater than operator (equivalent to is after)

<=
Description: less than or equal to operator

>=
Description: greater than or equal to operator

= or ==
Description: equality operator (same as occurs at)
Sample expression: 2010-03-01T00:00:00 == 2009-03-01T00:00:00
Returns: false

!= or <>
Description: inequality operator
Sample expression: 2010-03-01T00:00:00 != 2009-03-01T00:00:00
Returns: true

The following binary operators expect a time followed by a duration:

is within past

 99

May 4, 2004 100 GLIF3.5

Description: checks that first argument is within the duration specified by now minus the second
argument to now
Sample expression: 2000-10-02T00:00:00 is within past 2 days (assuming that now is 2000-10-
04T19:04:18.650-04:00)
Returns: false
Note: this operator calculates past two 2 days as 48 hours before the present time
 If two days prior is meant to start at midnight, other expressions could be substituted such
as:
 (2000-10-02T00:00:00 >= extract date (2 days ago)) and (2000-10-02T00:00:00 <=
extract date now)
Sample expression: 2000-10-02T23:30:00 is within past 2 days (assuming that now is 2000-10-
04T19:04:18.650-04:00)
Returns: true

-

Description: Subtracts a duration from an absolute date and time

Sample expression: now – 3 days (assuming now is 2000-10-20T15:03:38.419-04:00)
Returns: 2000-10-17T15:03:38.419-04:00
Sample expression: 1998-01-31 - 28 days
Returns: 1998-01-03T00:00:00-05:00

The following binary operators expect a time and a duration as arguments (in no particular

order):

+

Description: Adds a duration to an absolute date and time

Sample expression: 1995-03-04 + 720 days
Returns: 1997-02-21T00:00:00-05:00
Sample expression: 5 hours + 1999-03-04T05:00:00
Returns: 1999-03-04T10:00:00-05:00

Ternary operators:

… is within … to …
Description: checks that first argument is in the inclusive range defined by the second and third
arguments
Sample expression: 2000-03-10T05:04:03 is within 2000-03-10T05:04:03 to 2000-05-10T05:04:03
Returns: true

 100

May 4, 2004 101 GLIF3.5

The following ternary operators expect as arguments a time followed by a duration followed by a

time:

… is within … preceding …

Description: checks that first argument is in the inclusive range defined by the third argument minus
the second argument to the third argument

Sample expression: 2000-03-10T05:04:03 is within 4 months preceding 2000-05-10T05:04:03
Returns: true

… is within … following …

Description: checks that first argument is in the inclusive range defined by the third argument to the
third argument plus the second argument

Sample expression: 2000-10-03T06:45:23 is within 5 days following 2000-10-01T00:55:46
Returns: true

… is within … surrounding …

Description: checks that first argument is in the inclusive range defined by the third argument minus
the second argument to the third argument plus the second argument

Sample expression: 2000-09-29T17:20:01 is within 5 days surrounding 2000-10-01T00:55:46
Returns: true
Sample expression: 2000-10-05T00:00:00 is within 5 days surrounding 2000-10-01T00:55:46
Returns: true
Sample expression: 2000-10-06T19:05:40 is within 5 days surrounding 2000-10-01T00:55:46
Returns: false
Sample expression: (extract date 2000-10-06T19:05:40) is within 5 days surrounding (extract

date 2000-10-01T00:55:46)

Returns: true

5. Duration

Operations supported on durations include comparisons, addition, subtraction, multiplication, and division. Use of
unsupported operators with duration values is an error (causes a type mismatch exception to be raised. Note that
because of the fuzziness associated with certain durations (is 1 year 365 or 366 days? Is 1 month 28, 29, 30, or 31
days?), defaults are used for the number of days in a year (1 year = 365 days in our model), and the number of days
in a month (1 month = 31 days in our model). This means that certain operators would return results that differ from
the expected. For example the query 1 year == 12 months would return false because 365 days is not equal to 372
(12*31) days.

 101

May 4, 2004 102 GLIF3.5

Ultimately, the best approach to evaluating such fuzzy or vague comparisons might be to apply appropriate methods
for handling uncertainty from the Artificial Intelligence literature on uncertainty, or to disallow precise calculations
from being made from such imprecise expressions.

5.1 Unary Operators

is duration

Description: checks type of argument and returns true if it is a duration

Sample expression: is duration 3 years
Returns: true
Sample expression: is duration 5 months
Returns: true
Sample expression: is duration 20 hours
Returns: true

Sample expression: is duration 23
Returns: false

ago

Description: computes an absolute date and time equivalent to the current time (now)

minus a duration

Sample expression: 2 days ago (assuming now is 2000-10-03T18:19:06.270-04:00)
Returns: 2000-10-01T18:19:06.270-04:00

from now

Description: computes an absolute date and time equivalent to the current time (now)

plus a duration

Sample expression: 2 days from now (assuming now is 2000-10-03T18:19:06.270-04:00)
Returns: 2000-10-05T18:19:06.270-04:00

+
Description: unary plus operator
Sample expression: (+3 days)
Returns: 3 days
Note: the parentheses are required

-
Description: unary minus operator
Sample expression: (-50 hours)

 102

May 4, 2004 103 GLIF3.5

Returns: -50 hours
Note: the parentheses are required

Binary operators:

+

Description: Adds a duration to another duration (returns a duration in seconds unless

the duration specifiers are the same)

Sample expression: 340 days + 91 days
Returns: 431 days
Sample expression: 6 hours + 42 days
Returns: 3650400 seconds

-

Description: Subtracts a duration from another duration (returns a duration in seconds

unless the duration specifiers are the same)

Sample expression: 340 days - 91 days
Returns: 249 days
Sample expression: 6 hours - 25 seconds
Returns: 21575 seconds

*
Description: Multiplies a duration by a number to obtain another duration. Order of

arguments does not matter.

Sample expression: 40 days * 3
Returns: 120 days
Sample expression: 5 * 30 seconds
Returns: 150 seconds

/
Description: Divides a duration by a number to obtain another duration or divides a

duration by a duration to obtain a number

Sample expression: 40 days / 2
Returns: 20 days
Sample expression: 2 minutes / 1 second
Returns: 120

<
Description: less than operator
Sample expression: 40 days < 26 days
Returns: false
Sample expression: 360 hours < 1 year
Returns: true

 103

May 4, 2004 104 GLIF3.5

>
Description: greater than operator
Sample expression: 5 years > 12 months
Returns: true

<=
Description: less than or equal to operator
Sample expression: 26 minutes <= 26 minutes
Returns: true
Sample expression: 5 years <= 90 months
Returns: true

>=
Description: greater than or equal to operator
 Sample expression: 9 years >= 9 years
Returns: true

= or ==
Description: equality operator
Sample expression: 3 days == 5 days
Returns: false

!= or <>
Description: inequality operator
Sample expression: 3 days != 5 days
Returns: true

6. List

A list can contain any of the basic operators listed on the first page (including lists). Operations supported on lists
include membership checking, etc. Use of unsupported operators with lists is an error (causes a type mismatch
exception to be raised).

6.1 Unary Operators

is list

Description: checks type of argument and returns true if it is a list

Sample expression: is list {{1, 2}, 3, "hey", 1999-03-04}
Returns: true
Sample expression: is list 567
Returns: false

first
Description: returns the first element in a list

 104

May 4, 2004 105 GLIF3.5

Sample expression: first {2000-01-02T00:00:00, 24, 3, "hey", 1999-03-04}
Returns: 2000-01-02T00:00:00

Sample expression: first {{1, 2}, 3, "hey", 1999-03-04}
Returns: {1, 2}

last
Description: returns the last element in a list

Sample expression: last {2000-01-02T00:00:00, 24, 3, "hey", 1999-03-04}
Returns: 1999-03-04

Sample expression: last {{1, 2}, 3, "hey", "string"}
Returns: "string"

6.2 Binary Operators

is in

Description: checks whether first argument occurs in the list represented by the second

argument

Sample expression: 2 is in {50, 99, 2, 3, "hey", 1999-03-04}
Returns: true
Sample expression: 55 is in {50, 99, 2, 3, "hey", 1999-03-04}
Returns: false

where

Description: the where operator is generally used to select values from a list, and has

the form: “expr1 where expr2” (expr1 is usually a list, but can also be a

value of any of the other basic types). The right argument to the where

operator (expr2) is expected to be a logical expression, a list of extended

boolean values, or true, false, or unknown. When the right argument is

true, the left argument is returned unchanged. When it is false or

unknown, an empty list is returned. When the right argument is a logical

expression, it may make use of the keyword “it” to refer to the individual

 105

May 4, 2004 106 GLIF3.5

elements contained in the left hand side argument (when this is a list), or

to refer to the non-list value that is the left hand side argument. The valid

logical expressions that may appear on the right hand side of the where

are:

 is number it

 is string it

 is boolean it

 is unknown it

 is duration it

 is time it

 is list it

 it < subexpr

 subexpr < it

 it <= subexpr

 subexpr <= it

 it > subexpr

 subexpr > it

 it >= subexpr

 subexpr >= it

 it == subexpr

 subexpr == it

 it != subexpr

 subexpr != it

subexpr is in it

 106

May 4, 2004 107 GLIF3.5

 (where subexpr is a value of one of the basic types)

Sample expression: 1 where true

Returns: 1

Sample expression: 1 where false

Returns: {}

Sample expression: 1 where unknown

Returns: {}

Sample expression: 1 where {true, false, unknown, true, true}

Returns: {1, 1, 1}

Sample expression: {4,5,6,7,8,9,10} where it < 7

Returns: {4, 5, 6}

Sample expression: {4,5,6,7,8,9,10} where 7 < it

Returns: {8, 9, 10}

Sample expression: {4,5,6,7,8,9,10} where it <= 7

Returns: {4, 5, 6, 7}

Sample expression: {4,5,6,7,8,9,10} where 7 <= it

Returns: {7, 8, 9, 10}

Sample expression: {1,2,3,4,5,6,7} where it > 4

Returns: {5, 6, 7}

Sample expression: {1,2,3,4,5,6,7} where 4 > it

Returns: {1, 2, 3}

Sample expression: {1,2,3,4,5,6,7} where it >= 4

Returns: {4, 5, 6, 7}

 107

May 4, 2004 108 GLIF3.5

Sample expression: {1,2,3,4,5,6,7} where 4 >= it

Returns: {1, 2, 3, 4}

Sample expression: {1,2,3,4,5,6,7} where it == 4

Returns: {4}

Sample expression: {1,2,3,4,5,6,7} where it != 4

Returns: {1, 2, 3, 5, 6, 7}

Sample expression: {{"CHF", "Mary", 1}, {"CHF", "Don", 2}, {"Angina", "Sam", 3}}

where “CHF” is in it

Returns: {{"CHF", "Mary", 1}, {"CHF", "Don", 2}}

Sample expression: {{1,2}, 2, 4 hours, "hey", 1999-10-23, 3 days, "why", "one"}

where 1 is in it

Returns: {{1, 2}}

Sample expression: interval[2,3] where 2 is in it

Returns: interval[2,3]

Sample expression: interval[2,3] where 9 is in it

Returns: {}

Sample expression: {{1,2}, 2, 3, 4, "hey", 1999-10-23, 3 days} where is number(it)

Returns: {2, 3, 4}

Sample expression: {"a", "b", 3 days, 4 hours} where is number(it)

Returns: {}

Sample expression: {{1,2}, 2, 3, 4, "hey", 1999-10-23, 3 days, "why", "one"} where is

string(it)

Returns: {"hey", "why", "one"}

Sample expression: {{1,2}, 2, 3, 4} where is string(it)

Returns: {}

 108

May 4, 2004 109 GLIF3.5

Sample expression: {{1,2}, 2, 4 hours, "hey", 1999-10-23, 3 days, "why", "one"}

where is duration it

Returns: {4 hours, 3 days}

Sample expression: {{1,2}, 2, 4 hours, "hey", 1999-10-23, 3 days, "why", "one"}

where is time(it)

Returns: {1999-10-23}

Sample expression: {{1,2}, 2, 4 hours, "hey", 1999-10-23, 3 days, "why", "one"}

where is list(it)

Returns: {{1,2}}

Sample expression: {true, false, unknown, 1, 1999-03-04T05:00:00, "a"} where is

boolean(it)

Returns: {true, false, unknown}

Sample expression: {true, false, unknown, 1, 1999-03-04T05:00:00, "a"} where is

unknown(it)

Returns: {unknown}

Numeric Interval

Operations supported on numeric intervals include inclusion and overlap comparisons. The values appearing within
a numeric interval specification are real numbers with the exception of the special keywords –infinity and infinity.
An interval is specified by using the keyword “interval” followed by “[“ (to represent an inclusive lower bound) or
“(“ (to represent a non-inclusive lower bound), and two comma-separated numbers followed by “]“ (to represent an
inclusive upper bound) or “)“ (to represent a non-inclusive upper bound). The number specified as the lower bound
must be less than or equal to the number specified as the upper bound. Use of unsupported operators with numerical
interval values is an error (causes a type mismatch exception to be raised).

6.3 Binary Operators

is in

 109

May 4, 2004 110 GLIF3.5

Description: checks whether first argument occurs in the interval represented by the

second argument

Sample expression: 1 is in interval((-1), 5)
Returns: true
 Sample expression: (-10) is in interval((-50), (-2))
Returns: true
Sample expression: 5 is in interval(5, 29]
Returns: false
Sample expression: 5 is in interval[5, 29]
Returns: true

overlaps
Description: checks whether two numeric intervals overlap

Sample expression: interval[5,29) overlaps interval[26, 900]

Returns: true

Sample expression: interval(1, 50) overlaps interval(1, 50)

Returns: true

Sample expression: interval[3,5) overlaps interval(5, 99]

Returns: false

Duration Interval

Operations supported on duration intervals include inclusion and overlap comparisons. The values appearing within
a duration interval specification are durations. An interval is specified by using the keyword “interval” followed by
“[“ (to represent an inclusive lower bound) or “(“ (to represent a non-inclusive lower bound), and two comma-
separated durations followed by “]“ (to represent an inclusive upper bound) or “)“ (to represent a non-inclusive
upper bound). The duration specified as the lower bound must be less than or equal to the duration specified as the
upper bound. Use of unsupported operators with duration interval values is an error (causes a type mismatch
exception to be raised).

6.4 Binary Operators

is in

Description: checks whether first argument occurs in the interval represented by the

second argument

 110

May 4, 2004 111 GLIF3.5

Sample expression: 1 day is in interval((-1 day), 5 days)
Returns: true
 Sample expression: (-10 years) is in interval((-50 years), (-2 years))
Returns: true
Sample expression: 5 hours is in interval(5 hours, 29 days]
Returns: false
Sample expression: 5 hours is in interval[5 hours, 29 days]
Returns: true

overlaps
Description: checks whether two duration intervals overlap

Sample expression: interval[5 minutes, 29 minutes) overlaps interval[26 minutes, 900 minutes]

Returns: true

Sample expression: interval(1 month, 50 months) overlaps interval(1 month, 50 months)

Returns: true

Sample expression: interval[3 seconds, 5 minutes) overlaps interval(5 minutes, 99 hours]

Returns: false

Absolute Date and Time Interval

Operations supported on absolute date and time intervals include inclusion and overlap comparisons. The values
appearing within an absolute date and time interval specification are absolute dates and times. An interval is
specified by using the keyword “interval” followed by “[“ (to represent an inclusive lower bound) or “(“ (to
represent a non-inclusive lower bound), and two comma-separated absolute date and time values followed by “]“
(to represent an inclusive upper bound) or “)“ (to represent a non-inclusive upper bound). The absolute date and
time specified as the lower bound must occur before or equal the absolute date and time specified as the upper
bound. Use of unsupported operators with absolute date and time interval values is an error (causes a type mismatch
exception to be raised).

6.5 Binary Operators

is in

Description: checks whether first argument occurs in the interval represented by the

second argument

Sample expression: 1999-03-04 is in interval(1998-10-12, 2000-02-05T05:00:00)

overlaps
Description: checks whether two absolute date and time intervals overlap

 111

May 4, 2004 112 GLIF3.5

Sample expression: interval(1998-10-12, 2000-02-05T05:00:00) overlaps interval(1998-10-12,

2000-02-05T05:00:00)

Returns: true

 112

May 4, 2004 113 GLIF3.5

7. REFERENCES

.1 Object Management Group. The Common Object Request Broker: Architecture and

Specification; 1999. Report No.: OMG Document Number 91.12.1.
.2 Bernstam E, Ash N, Peleg M, Tu S, Boxwala AA, Mork P, et al. Guideline classification

to assist modeling, authoring, implementation and retrieval. In: Proc AMIA Symp.; 2000
November 2000; 2000. p. 66-70.

.3 Advisory Committee on Immunization Practices A. Prevention and Control of Influenza.
Morbidity and Mortality Weekly Report 2000;49(RR03):1-38.

.4 Irwin RS, Boulet LS, Cloutier MM, Gold PM, Ing AJ, O'byrne P, et al. Managing Cough
as a Defense Mechanism and as a Symptom, A Consensus Panel Report of the American
College of Chest Physicians. Chest 1998;114(2):133S-181S.

.5 American College of Cardiology/American Heart Association/American College of
Physicians-American Society of Internal Medicine. Guidelines for the Management of
Patients with chronic Stable Angina. J Am Col Cardiol 1999;33:2092-
2197.http://www.acc.org/clinical/guidelines/june99/index.html.

.6 ACP-ASIM. Screening for Thyroid Disease. Ann Int Med 1998;129:141-143.

.7 AHCPR. Acute Low Back Problems in Adults, Clinical Practice Guideline Number 14:
AHCPR Publication No. 95-0642; 1994. Report No.: 95-0642.

.8 AHCPR. Heart Failure: Evaluation and Care of Patients With Left-Ventricular Systolic
Dysfunction, Clinical Practice Guideline Number 11: AHCPR Publication No. 94-0612;
1994. Report No.: 94-0612.

.9 ACP-ASIM. Acute Major Depression and Dysthymia. Ann Intern Med 2000;132:738-
742.

.10 Bartlett JG, Breiman RF, Mandell LA, File TM. Community-Acquired Pneumonia in
Adults: Guidelines for Management. Clinical Infectious Diseases 1998;26:811-838.

.11 National Institute of Health. The Sixth Report of the Joint National Committee on
Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: National
Institute of Health; 1997 November. Report No.: 98-4080.

.12 Snow V, Weiss K, Wall EM, Mottur-Pilson C, for the American Academy of Family
Physicians and the American College of Physicians-American Society of Internal
Medicine. Pharmacological Management of Acute Attacks of Migraine Headache:
Clinical Practice Guideline. accepted for publication (pending revisions) by Annals of
Internal Medicine 2001.

.13 Peleg M, Boxwala AA, Tu S, Greenes RA, Shortliffe EH, Patel VL. Handling
Expressiveness and Comprehensibility Requirements in GLIF3. In: MedInfo 2001; 2001;
2001. p. 241-245.

.14 Lindberg C. The Unified Medical Language System (UMLS) of the National Library of
Medicine. J Am Med Rec Assoc 1990;61(5):40-42.

.15 Schadow G, Russler DC, Mead CN, McDonald CJ. Integrating Medical Information and
Knowledge in the HL7 RIM. In: Proc. AMIA Annual Symposium 2000; 2000; 2000. p.
764-768.

.16 Ogunyemi O. The Guideline Expression Language (GEL) User’s Guide. Technical
Report. Boston, MA: Brigham and Women's Hospital; 2000. Report No.: DSG-TR-2000-
001.

 113

http://www.acc.org/clinical/guidelines/june99/index.html

May 4, 2004 114 GLIF3.5

.17 E 1460 Standard Specification for Defining And Sharing Modular Health Knowledge
Bases (Arden Syntax for Medical Logic Modules). ASTM Standards v 14.01.
Philadelphia: American Society for Testing and Materials; 1992.

.18 Peleg M, Ogunyemi O, Tu SW, Boxwala AA, Zeng Q, Greenes RA, et al. Using features
of Arden syntax with object-oriented medical data models for guideline modeling. Proc
AMIA Symp 2001:523-
7.http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Cit
ation&list_uids=11825243.

.19 Ogunyemi O, Zeng Q, Boxwala AA. BNF and built-in classes for object-oriented
guideline expression language (GELLO). Technical Report. Boston, MA: Brigham and
Women's Hospital; 2001. Report No.: DSG-TR-2001-018.

.20 Warmer J, Kleppe A. The Object Constraint Language: Getting Your Models Ready for
MDA. 2nd ed. Boston, MA: Addison-Wesley Pub Co; 2003.

.21 Johnson PD, Tu SW, Musen MA, Purves I. A virtual medical record for guideline-based
decision support. Proc AMIA Annu Fall Symp 2001:294-8.

.22 8601 I, inventor Data elements and interchange formats - information interchange -
Representation of dates and times. 1998.

.23 National Kidney Foundation N. Clinical practice guidelines for peritoneal dialysis
adequacy. New York; 1997.

.24 American Society of Health-System Pharmacists A. Therapeutic guidelines for
nonsurgical antimicrobial prophylaxis. Am J Health Syst Pharm 1999;56(12):1201-50.

.25 Cattell RGG, Barry DK, Berler M, Eastman J, Jordan D, Russell C, et al., editors. The
Object Data Standard: ODMG 3.0. San Francisco, CA: Morgan Kaufmann Publishers;
2000.

.26 Snodgrass RT. The TSQL temporal query language. Boston, MA: Kluwer Academic
Publishers; 1995.

 114

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11825243
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11825243

May 4, 2004 115 GLIF3.5

 115

Expression
Guideline

RIM Core
GLIF

Supplemental

Material

Domain

May 4, 2004 116 GLIF3.5

Guideline Step

Iteration
Expression Decision

Step

Macro

Events &
Exceptions

Expression

Action Specification

 116

	Introduction
	Purpose of document
	What is GLIF?

	Overview of GLIF
	Scope of GLIF
	Bird’s eye view of GLIF
	Layers of abstraction
	Understanding GLIF3’s medical ontology
	Core GLIF
	Reference Information Model (RIM)
	The Medical Knowledge Layer

	Creating a guideline
	Header information
	Parameter passing
	Building the flowchart
	Action Steps
	Decision Steps
	Branch Steps
	Synchronization Steps
	First look at expressions
	Criteria that contain temporal operators

	Documenting the guideline
	The Global Concepts

	Specifying decisions
	Different types of decision steps
	Modeling deterministic one-of decisions (Previously known as
	Modeling non-deterministic decision Steps
	Utility_Choice_Step
	Choices
	Weighted Choice
	Utility Choice
	Specifying decision criteria
	Defining patient data

	Describing actions
	Specifying the action and parameters
	Iterative actions (and decisions)
	2. Iterate 3 times a day for 30 times

	Action Specifications
	Subguideline Action
	Assignment Action
	Generate Event Action
	Get Data Object Action
	Get Data For GEL Action
	Get_OO_Data_Action
	Medically Oriented Action

	Patient States
	Parallel paths in a guideline
	Branching to multiple paths
	Synchronizing from multiple paths

	Dealing with complex guidelines
	Nesting decisions
	Nesting actions

	RDF-based Syntax for GLIF
	Acknowledgements
	Appendix A
	Macros
	Risk Assessment Macro

	Views of a guideline
	Specifying events and exceptions
	Appendix B:
	Extended Boolean
	Duration
	Unary Operators

	List
	Unary Operators
	Binary Operators
	Binary Operators
	Binary Operators
	Binary Operators

	REFERENCES

