
Medical-Objects Documentation

Medical-Objects GELLO
User Guide

© 2007 Medical-Objects Pty Ltd

Table of Contents

Foreword

0

 Part I Introduction

4

 1 Gello v.1.x

4

 Part II Getting Started

4

 1 Example 1 - very simple program

4

 2 Example 2 - some expressions

5

 3 Example 3 - using strings

5

 4 Example 4 - some real GELLO

5

 5 Wrap up

6

 Part III User manual

7

 1 GELLO Programs

7

Tokens

7

Identifiers

7

Numbers

8

Strings

9

Symbols

9

Reserved Words

10

Comments

11

Single-line comments

11

Multi-line comments

11

 2 Values and Types

12

Simple Types

12

Integer Type

12

Real Type

12

String Type

12

Boolean Type

12

Enumeration Types

12

Collection Types

12

Tuple Types

13

Class Types

14

Class Attributes

14

Class Operations

14

 3 Expressions

14

Operands

15

Literals

15

Integer Literals

15

Real Literals

15

String Literals

15

Boolean Literals

15

Collection
Literals

15

Tuple Literals

15

Variable values

16

Class Attribute Values

16

Class Operation Values

17

Operators

17

Simple Type Operators

17

Arithmetic operators

17

Boolean opertors

18

Class operators

18

Collection operators

18

Conditional Expression

22

 4 Statements

22

Let Statement

22

Final Expression

23

Context Statement

24

 5 The Data Model

24

 6 Using Collections

25

 7 Using Physical Quantities

26

Part IV Appendices

27

 1 GELLO BNF

27

1 Introduction

The Medical-Objects implementation of GELLO was written as a response to the need for decision
support within the range of HL7 products produced by Medical-Objects Pty Ltd. It was initially developed
in 2006 and has been successfully integrated into Medical-Objects Explorer and other research related
products. For more information on Medical-Objects products visit www.medical-objects.com.au

1.1 GELLO v.1.x

GELLO is formally described as “An Object-Oriented Query and Expression Language for Clinical
Decision Support”. In a nutshell, it is a language to write expressions and make queries on medical
data. GELLO expressions are somewhat like mathematical formulas but include additional functions to
query and organize the data that the expressions refer to.

The GELLO language has been targeted at a wide range of IT Health professionals, from IT savvy
doctors to experienced IT specialists working with in the IT Health industry. It has been based in part on
the OCL (Object Contraint Language) version 2.0 language developed by OMG (Object Management
Group) GELLO v.1.x is an extended version of GELLO which has been developed by Medical-Objects.
While based on the official specification of GELLO, it provides some extensions to the language which
have been required when using GELLO in a real world situation, and also to address any ambiguities and
omissions within the specification. These changes to the BNF of the existing HL7 standard are in the
preballot stage.

2 Getting Started

Let's learn about GELLO by working through some small examples.

2.1 Example 1 - very simple program

Here‟s an example of a very simple GELLO program.

let a:integer = 1

let b:integer = a + 1

b

This program is composed of 3 lines. The first two lines comprise of Statements and the last line is a
final GELLO expression.

GELLO statements are of several forms. Our example only contains Let statements. A Let statement
defines a variable (in this example‟s first statement, the variable „a‟ and assigns a value to that variable.
The final GELLO expression signifies that the GELLO program should return whatever value the
expression evaluates to.

In our example, the first let statement “let a:integer = 1” defines the variable „a‟ to be of type „integer‟ and
gives it the value „1‟. (an integer is a whole number like 1, 2, 3, 4 and so forth and also includes negative
numbers like -1, -5 and so forth). A type in GELLO refers to the kind of data that a variable can have. In
this example, the type of the variable is “Integer”.

The second let statement defines the variable „b‟ and assigns it the value of „a + 1‟ (which turns out to be
1 + 1 = 2).

http://www.medical-objects.com.au/

The final line of the program, the GELLO expression simply returns the value of „b‟ which in this case
happens to be 2.

Here is the output from running such a program…

A: Integer = 1
B: Integer = 2
Result is 2

2.2 Example 2 - some expressions

Here is a slightly more complicated GELLO example.

let a:integer = 50

let b:integer = (a*100 + 20) div 2

a + b

And for which the output is…
A: Integer = 50
B: Integer = 2510
Result is 2560

2.3 Example 3 - using strings

We can also work with expressions which are not numbers but rather are strings, which are simply a
group of letters like words.
Here is an example using strings.

Let surname:String = ‘Smith’

Let givenname:String = ‘Fred’

givenname.concat(‘ ‘).concat(surname)

And the results are

SURNAME: String = Smith
GIVENNAME: String = Fred
Result is Fred Smith

This example produces a result by concatenating (or joining) the three strings givenname, „ „ and
surname with the concat() operator producing the string „Fred Smith‟.

Note that strings are not simply words, but can contain any character including spaces, however string
values must always be surrounded by the „ character.

2.4 Example 4 - some real GELLO

Let‟s look at a more realistic example.

context observations: Observations from Model.observations

let sodiums = observations->select(code.name = "Sodium")

sodiums.value

This example introduces a new kind of statement, the context statement. This statement defines a

variable much like the let statement, however, it is different in that instead of assigning a simple value, it
assigns data to the variable from an external source. In this case, it defines a context variable of type
Observation which will be populated by the caller with all the patient‟s observations. The identifier
“Model” refers to the containing Data Model that the GELLO program runs within.

The type Observation is predefined to be a collection (or list) of individual observations. Each of these
observations will have predefined properties depending on the data model, which in our case will have at
least the properties “code” and “value”. The codes of an observation will in turn have properties of “code”
of type “CodedValue” (not to be confused with the observation‟s “code”) and “name” which are both
strings (groups of letters like words).

The next statement is somewhat familiar in that it is like the Let statement we saw earlier, however this
time the type of the variable has been omitted. When written this way, the type of the variable is inferred
from the expression used to create it. The expression assigned to the variable also looks a little
unusual. You will notice after the variable name “Observation” is the symbol “->”. This is the query
operator and it is used to process the variable in a particular way, and in this example, we are specifying
that we want to select from the observation list all observations that have a code with name “Sodium”.
We then finally assign the resulting new collection to the variable “sodiums”
The final line in the program returns only the value properties of the variable “sodiums”.

You may have noticed that we have introduced two new concepts, properties and collections.

Variables can be defined with simple types like Integer, String, Real or Boolean (we‟ll discuss Real and
Boolean later), or they can be defined with more complex types which are aggregates of other variables
called “properties”. We refer to the properties of a variable by using the “.” operator. In the example,
there two places where we use “.”. The first is at the place “code.name” which is referring to the property
name of the variable “code” (of type CodedValue). The second place is the reference “sodiums.value”
which is a slightly more complicated use of the “.” operator.

The other new concept is that of collections. A collection is a group or list of values each representing
the same type of data. In GELLO, these can be a “Set”, “Bag” or “Sequence”, but for this example, it
does not matter greatly which kind of collection it is, just that the variable “observation” is a collection of
individual observations and that “sodiums” is the resulting collection formed by filtering out just the items
which have as their code the coded name of “Sodium”.

Let‟s run the program to see what the results might look like. For this example we‟ll assume that the
test data has been loaded. If you are running this yourself, make sure your test data is loaded first, or
you won‟t see any results.

OBSERVATIONS: Bag(Observation) = 496 Elements
SODIUMS: Bag = Bag{137, 138, 142, 131, 140, 137, 139, 135, 136, 140}
Result is Sequence{137, 138, 142, 131, 140, 137, 139, 135, 136, 140}

2.5 Wrap up

We've seen a few brief examples of how GELLO might look and feel. The following chapters will go into
more detail on how to use GELLO.

3 User Manual

Here we will discuss the basics of what comprises a GELLO program.

3.1 GELLO Programs

A GELLO program is actually an expression (value) which is evaluated by the GELLO compiler.
The complete program must comply with a set of rules called a grammar, and must also also comply
with another set of rules called the semantics. The combination of the grammar and the semantics
defines the GELLO language. The grammar is defined formally by what is called a BNF grammar which
is provided in the Appendices to this document.

GELLO programs are comprised of one or more lines of text which are further broken down into tokens
and comments. The tokens are the items which have meaning to the compiler, while the comments are
readable annotations for documenting the program and are ignored by the compiler.

GELLO v.1.x has extended the standard GELLO specification. Where there are differences between
standard GELLO and GELLO v.1.x, they will be noted.

3.1.1 Tokens

Tokens are the individual words which make up a GELLO program. Tokens can be identifiers, numbers
and strings and symbols.

3.1.1.1 Identifiers

Identifiers are used in GELLO to represent variable names, type names, property names and method
names.

Identifiers can be 1 or more characters in length, and must start with "A-Z", "a-z" or "_". Subsequent
characters must be "A-Z", "a-z", "0-9", or "_".

In GELLO v.1.x, identifiers are not case sensitive, which means that identifiers with the same alphabetic
letters but with a different case will be treated by the compiler as meaning the same thing. There is no
limit to the number of characters in an identifier.

Here are some examples of identifiers.

X

x

a1

A20

observation

Test_for_Creatinine

X201

_This_is_also_an_identifier

The BNF syntax for a GELLO variable is

<Identifier:

["A"-"Z","a"-"z","_"](["A"-"Z","a"-"z","_","0"-"9"])* >

3.1.1.2 Numbers

Numbers are used in GELLO to represent Integer or Real values.

All numbers must start with a digit ("0-9") followed by digits ("0-9"), optionally a period ("."), more digits
("0-9") and an optional exponent.

An exponent is represented by the letter "E" or "e" followed by a signed integer. It means that the first

part (the mantissa) is multiplied by 10 to the power of the exponent. i.e. 1.1e3 means 1.1 times 10 to
the power 3 which is 1100.

Integer numbers do not have a period or exponent (i.e. it is a string of digits only). In practice there is an
upper and lower limit of what can be represented in computable form.

Real numbers are distinguished from Integer numbers by having a "." and an exponent. In practice there
are limits to the size of the exponent and also the number of digits in the mantissa which can be
represented in computable form.

Here are some examples of Integer numbers.

0 // the value zero

1 // the value one

15 // the value fifteen

2345 // the value two thousand, three hundred and forty five

812838482 // and so forth....

Here are some examples of Real numbers.

0.0 // the value zero as a real number

1.0 // the value one as a real number

1.0e0 // the same value as above

0.15 // the value 15 divided by one hundred (or three twentieths)

20.201 // twenty plus two hundred and one thousands

3.141596254 // an approximation of Pi

1.0E2 // the value one hundred (one times ten to the power two)

4.2E-30 // 4.2 divided by ten to the power thirty.

420.0e-32 // the same value as above

The BNF syntax for Integer and Real numbers is as follows

<IntegerConstant: (["0"-"9"])+ >

<RealConstant: (["0"-"9"])+ "."(["0"-"9"])* (["E"|"e"](["+","-"])?

(["0"-"9"])*)? >

3.1.1.3 Strings

Strings are used to represent textual values in GELLO expressions.
They are started with a quotation character (either " or ') and are terminated by the same character.
Strings are not allowed to continue over more than a line, and you can place any character in a string
except for the surrounding quotation character.

If you wish to add control characters to a string, they can be embedded with the standard XML quoting
practice using the form "&ssss;". The following escape symbols are recognized.
"&nl;" Add a new line (carriage return + line feed)
""" Add a double quote to the string (")
"'" Add a single quote to the string (')

Here are some examples of strings.

'this is a string'

"this is also a string"

"this is a string with some quotations marks. "GELLO" is the

best language!!!"

"multi line string.&nl;another line.&nl;and another."

The syntax of strings is defined as follows.

<StringConstant: ("\'"(~["\'",\n,\r])* "\'" | "\"" (~["\"","\n,\r])*

"\"") >

3.1.1.4 Symbols

Symbols are characters or combinations of characters which have special meaning in GELLO. Here is a
list of them.

+

-

*

/

=

.

..

(

)

[

]

{

}

,

;

:

::

<>

!=

<

>

<=

>=

->

|

3.1.1.5 Reserved Words

Reserved words are identifiers which are special in GELLO. They cannot be used as identifiers since
they have special meaning within the grammar of GELLO. In GELLO v.1.x, reserved words are not case
sensitive.
Here is a list of them.

AND OR XOR NOT DIV MOD

SELECT REJECT COLLECT FORALL EXISTS

SIZE ISEMPTY NOTEMPTY SUM REVERSE MIN MAX FLATTEN

FIRST LAST AVERAGE STDEV VARIANCE

COUNT INCLUDES INCLUDING EXCLUDING INCLUDESALL SORTBY

ISTYPEOF ASTYPE HASINTERFACE

FIRSTN LASTN ELEMAT

INTERSECTION UNION ITERATE JOIN

LET

IF THEN ELSE ENDIF

CONCLUDE CONTINUE

CONTEXT FROM

SET BAG SEQUENCE TUPLE ENUM

INTEGER STRING REAL BOOLEAN TRUE FALSE UNKNOWN

MODULE TYPE CLASS METHOD EXTENDS VOID PROPERTY

3.1.2 Comments

Comments can be either single-line comments or multi-line comments. Comments are used to annotate
the GELLO program without affecting how the program functions, and are a GELLO V.1.X extension to
the specification.

3.1.2.1 Single-line Comments

A single line comment starts with the "//" characters and can appear anywhere on a line, even on lines
with GELLO source. All characters from the "//" up until the end of the line are treated as comments.
Some examples of single line comments are...

// this is a single line comment.

// All characters are ignored up to the

end of the line.

// the following is a line of commented GELLO source.

// let a:integer = 52

// the following is a comment after some GELLO source.

let b:string = 'some string' // our temporary variable "b" has the

value "some string"

3.1.2.2 Multi-line Comments

A multi-line comment starts with the character sequence "/*" and finishes with the character sequence
"*/". They can span more than one line or simple be embedded within an existing line.
Here are some examples of multi-line comments.

/* this GELLO comment spans many lines.

All the text here is commented and will be ignored by the GELLO

compiler.

We can put anything we like in here, including strings, numbers symbols

and so forth as long

as it doesn't contain the multi-line comment end string.

This comment will end after here */

/*

Another comment

*/

/****** this too ********/

let a: integer = /* an embedded comment */ 20

/* we can put one here too */ if a = 20 then /* and here */ 50 else /*

blah... */ endif

3.2 Values and Types

All expressions in GELLO have a Value and a Type. The Value is the actual representation of the Type.
Types can be either Simple Types, Collection Types, Tuple Types or Model Types

3.2.1 Simple Types

Simple types represent the most fundamental pieces of data that a GELLO program can work with.
GELLO has several simple data types available. Integer, Real, String and Boolean

3.2.1.1 Integer Type

The Integer type represents values which are whole numbers. They can be positive or negative numbers
and also include the value zero. GELLO v.1.x Integer values are stored as Double precision real numbers
(64 bits) with an exponent of Zero. This means they have at most 54 bits of precision (from -(253-1) up to
(253-1))

3.2.1.2 Real Type

The Real type represents values which are numbers which are not necessarily integers. Integers are a
subset of Real numbers. GELLO v.1.x Real values are stored as Double precision real numbers (64 bits).

3.2.1.3 String Type

The String type represents values which are sequences of characters. Strings in GELLO v.1.x can have
any length within the constraints of the available memory in the executing environment, and the
characters are taken from the extended ASCII character set.

3.2.1.4 Boolean Type

The Boolean type is used to represent GELLO truth values. Values of this type can only be true, false
or unknown.

3.2.2 Enumeration Types

Enumeration types are similar to simple types except that the values are defined using symbols.
For example a variable with enumeration type Colour could be defined as follows.
let colour:enum(red,blue,yellow,green,violet) = blue

At the moment, the GELLO specification is incomplete with regard to using enumeration types, however
if the underlying data model uses enumeration types, these may be imported by the GELLO program.
Implementation Note: This feature is not activated in the current version of GELLO v.1.x.

3.2.3 Collection Types

A collection is a list of data values, each with the same data type. The data values can be either of a
simple type like integer or string, or can be complex data types like collections, tuples or classes. The
components or items of a collection are formerly known as collection elements.

There are three kinds of collections, Sets, Bags and Sequences.

A Set is a list of items which are all distinct (i.e. there can be no identical items). They may be in any
order, however the ordering is unimportant when comparing two sets.

A Bag is similar to a Set with the exception that more than one item of the same value is allowed, and
ordering is unimportant when comparing two bags.

A Sequence is much the same as a bag, except that the order of the items is important.

Here are examples of Sets.

Set{ 1, 2, 3, 4, 5 } // a set of the first 5 integers.

Set{ "apple", "orange", "pear" } // a set of strings with values

// corresponding to the names of fruit

Here are examples of Bags

Bag{ 1, 2, 2, 3, 4, 4, 4, 5 } // a list of integer values

// (with duplicates)

Bag{ 1, 2, 3, 2, 4, 5, 4, 4 } // same as above even though

// the ordering is different

Bag{ "apple", "orange", "pear", "apple" } // a list of strings with

values

// corresponding to the names of fruit

Here are examples of Sequences

Sequence{ 1, 2, 2, 3, 4, 4, 4, 5 } // a list of integer values

// (with duplicates)

Sequence{ 1, 2, 3, 2, 4, 5, 4, 4 } // different to above since the

// ordering is important

Sequence{ "apple", "orange", "pear", "apple" } // a list of strings

with values

// corresponding to the names of fruit

3.2.4 Tuple Types

Tuple types are similar to Collections in that they represent a group of related data items. However,
unlike collections where the collection elements must be all of the same type, in tuples they may be of
different types. Each element of a tuple is accessed by its name, and has its own distinct element
type.

Here is an example of a let statement with a tuple representing the contact details and of a patient. The
tuple definition starts with "tuple(" and ends with ")". Tuple types may be nested within other complex
types, and other types can be nested within a tuple type.

let patient_contact:

tuple(surname: string,

givenname: string,

streetnumber: integer,

streetname

city: string,

zipcode: integer

country: string)

= tuple{

surname = "Smith",

givenname = "Fred",

streetnumber = 123,

city = "MoTown",

zipcode = 998877,

country = "Republic of MoTownomia"}

The syntax of tuple type definitions is

TupleType ::= <Tuple> "(" TupleTypeList ")"

TupleTypeList ::= TupleTypeList "," TupleTypeElement

TupleTypeList ::= TupleTypeElement

TupleTypeElement ::= <Identifier> ":" Type

3.2.5 Class Types
Class types are similar to tuple types in that that have named elements which are called Attributes.
Classes also have Operations which can be performed on the class. In general, the data model supplied

to the GELLO program will have a number of classes which represent components of the data model.

3.2.5.1 Class Attributes

Enter topic text here.

3.2.5.2 Class Operations

Enter topic text here.

3.3 Expressions

Expressions form the foundation of GELLO programs and are made up of operands and operators.
Generally an expression is written as a list of operands separated by operators. Operators have
precedence, which means the order in which the operators will be applied when evaluating an expression
with more than one operator. The precedence of operators may be overridden by the use of "(" and ")" to
group sub-expressions.

conceptually in grammatical form

Expression ::= Expression Operator Operand

Expression ::= Operand

and

Operand ::= Literal

Operand ::= Variable

Operand ::= UnaryOperator Operand

Operand ::= "(" Expression ")"

Operand ::= ConditionalExpression

3.3.1 Operands

operands can be either literals, variable values, or the results of attributes, operations or queries.

3.3.1.1 Literals

Literal operands are operands which have fixed literal values, such as numbers, strings, or even complex
literals like collection or tuple literals.

3.3.1.1.1 Integer Literals

Integer literals are values which are integer tokens. see Numbers

3.3.1.1.2 Real Literals

Real literals are values which are real tokens. see Numbers

3.3.1.1.3 String Literals

String literals are values which are string tokens. see Strings

3.3.1.1.4 Boolean Literals

Boolean literals are values which are boolean tokens. see Boolean Type

3.3.1.1.5 Collection Literals

the syntax of Collection Literals is as follows

CollectionLiteralExp ::= CollectionType "{" CollectionLiteralParts "}"

CollectionLiteralExp ::= CollectionType "{" "}"

CollectionLiteralParts ::= CollectionLiteralParts ","

CollectionLiteralPart

CollectionLiteralParts ::= CollectionLiteralPart

CollectionLiteralPart ::= Expression

CollectionLiteralPart ::= CollectionRange

CollectionRange ::= Expression ".." Expression

3.3.1.1.6 Tuple Literals

the syntax of Tuple Literals is as follows

TupleLiteralExp ::= <Tuple> "{" TupleDefList "}"

TupleDefList ::= TupleDefList "," TupleDef

TupleDefList ::= TupleDef

TupleDef ::= <Identifier> ":" Type "=" Expression

TupleDef ::= <Identifier> "=" Expression

3.3.1.2 Variable values

A variable operand is represented by a variable name, and can be modified by any number of attributes
or operations.

for example, in the program

let a:integer = 1

let b:integer = a + 25

b

there are variables a and b.

Whenever a variable is referred to, it is replaced in the expression by its value (in this example a has the
value 1 and b has the value 26.

In the this example,

let sodiums = observations->select(code.name = "Sodium")

sodiums.value

there are several variable values.

observations

code

sodiums

3.3.1.3 Class Attribute Values

A class attribute value is specified by following an expression operand by a "." and an identifier

representing the attribute name. The resulting operand can be used as operand. An attribute means the
same as the property of a class in other object oriented languages.
for example,
if a variable named obs of type Observation has the attributes name and age, these attributes can be
written as

obs.name

and
obs.age

The operator may be repeatedly applied to the operand.

for example, one can write

obs.name.surname

to represent the surname attribute of the name attribute of the Observation obs

The syntax of a Class Attribute is

Variable ::= Variable . <Identifier>

3.3.1.4 Class Operation Values

Class Operation values are similar to attributes, but instead return the result of an operation applied to a
variable operand. An operation means the same as a method of a class in other object oriented
languages.

for example, if there is a variable patient of class Patient, and it has an operation

prescription_count_for_recent_years(num_years: Integer): Integer

to count the number of prescriptions in the last N years, one could get the number of prescriptions in the
last year by writing...

patient.prescription_count_for_recent_years(1)

the syntax of a Class Operation is

Variable ::= Variable . <Identifier> "(" Params ")"

3.3.2 Operators

Expression Operators represent an operation which can be performed on one or two values or Operands
of an expression. An operation on a single operand is called a Unary Operator and an operation on two
operands is called a Binary Operator. Generally the form is either

UnaryOperator Operand

Or

Operand1 BinaryOperator Operand2

3.3.2.1 Simple Type Operators

Arithmetic operators
Boolean operators

3.3.2.1.1 Arithmetic operators

The following operators work on Reals and Integer types.

+ addition of two operands
- subtraction of two operands
* multiplication of two operands
/ division of two operands

- negation of a single operand

The following operators work on Integer types only

div integer division of two operands
mod integer modulo division (remainder after division) of two operands

3.3.2.1.2 Boolean operators

The following operators work on Boolean types. In GELLO, the Boolean operators also work for unknown
values.

and the logical and of two operands
or the logical inclusive or of two operands
xor the logical exclusive or of two operands
not the logical inverse of one operand

Here is a table outlining the results of each Boolean operator

A B A and B A or B A xor B not A
false false false false false true
false true false true true true
true false false true true false
true true true true false false
false unknown false unknown unknown true
true unknown unknown true unknown false
unknown false false unknown unknown unknown
unknown true unknown true unknown unknown
unknown unknown unknown unknown unknown unknown

3.3.2.2 Class operators

There are several class operators available.

value.isUndefined() returns true if the value is null or undefined.
value.isDefined() returns true if the value is not null or undefined.
value.isTypeof(name) returns true if the class of value is name.

3.3.2.3 Collection Operators

A collection operator is an operator that operates on collection classes only. To understand how
collection operators are used, see Using Collections.

It takes the form <collection> "->" <collection operator> "(" <parameters> ")"

Here is an example using a collection operator.

let sodiums = observations -> select(code.name = "Sodium")

This means select from the collection observations only observations which have the attribute code
with a name of "Sodium".

Some collection operators may take one or more conditions as parameters, while others may take a
number, and some no parameters at all.
There are many predefined collection operators in GELLO. Here is a list of them with some examples of
usage.

select(BooleanExpression)
select(v | boolean-expression-with-v)
select(v:Type | boolean-expression-with-v)

observations->select(code.name = 'sodium')

observations->select(obs | obs.code.value > 20 or obs.name = 'Na')

observations->select(obs:EncodedObservation | obs.encoded.code.value >

20 or obs.name = 'Na')

reject(BooleanExpression)
reject(v | boolean-expression-with-v)
reject(v:Type | boolean-expression-with-v)

observations->reject(code.name = 'sodium')

observations->reject(obs | obs.code.value > 20 or obs.name = 'Na')

observations->reject(obs:EncodedObservation | obs.encoded.code.value >

20 or obs.name = 'Na')

collect(Expression)
collect(v | expression-with-v)
collect(v:Type | expression-with-v)

observations->collect(code.name)

observations->collect(obs | obs.code.value)

observations->collect(obs:EncodedObservation | obs.encoded.code.value)

forAll(BooleanExpression)
forAll(v | boolean-expression-with-v)
forAll(v:Type | boolean-expression-with-v)

observations->forAll(code.name = 'sodium')

observations->forAll(obs | obs.code.value > 20 or obs.name = 'Na')

observations->forAll(obs:EncodedObservation | obs.encoded.code.value >

20 or obs.name = 'Na')

exists(BooleanExpression)
exists(v | boolean-expression-with-v)
exists(v:Type | boolean-expression-with-v)

observations->exists(code.name = 'sodium')

observations->exists(obs | obs.code.value > 20 or obs.name = 'Na')

observations->exists(obs:EncodedObservation | obs.encoded.code.value >

20 or obs.name = 'Na')

iterate(elem:Type; result:Type = expression | expression-with-elem-and-result)

observations->iterate(i:integer;

r:integer = 0 |

if code.name = 'Na' then r + 1 else r endif

)

includesAll(CollectionExpression)

observations->collect(code.name)->includesAll('Na')

sortBy(ExpressionList)

observations->sortBy(code.name,date)

firstN(IntegerExpression)

observations->firstN(10)

lastN(IntegerExpression)

observations->lastN(10)

elemAt(IntegerExpression)

observations->elemAt(5)

size()

observations->size()

isEmpty()

observations->isEmpty()

notEmpty()

observations->notEmpty()

sum()

observations->collect(value)->sum()

reverse()

observations->reverse()

min()

observations->collect(value)->min()

max()

observations->collect(value)->max()

flatten()

observations->flatten()

first()

observations->first()

last()

observations->last()

average()

observations->collect(value)->average()

stdev()

observations->collect(value)->stdev()

variance()

observations->collect(value)->variance()

count(object)

observations->collect(code.name)->count('Na')

includes(object)

observations->collect(code.name)->includes('Na')

including(element)

observations->collect(code.name)->including('Na')

excluding(element)

observations->collect(code.name)->excluding('Na')

intersection(set)

all_allergies->intersection(airborne_allergies)

union(set)

new_allergies->intersection(old_allergies)

join(collections; joinedproperties; booleanExpression; orderbyExpression)

3.3.3 Conditional Expression

A Conditional Expression is an expression which is determined by a boolean value. If the expression
between If and Then evaluates to true, the resulting expression is that between the Then and Else
symbols, otherwise it is the expression between the Else and Endif symbols.. An important aspect of

Conditional Expressions is that the two expressions alternatives are actually Expression Blocks which
means one can have additional Let or Context statements inside the Conditional Expression. It is
important to remember that any variables defined in an expression block are only local to that block.

The syntax is as follows.

ConditionalExpression ::= <If> Expression <Then> ExpressionBlock <Else>

ExpressionBlock <Endif>

3.4 Statements
A GELLO program typically consists of a number of statements one after the other. Usually a GELLO
program contains a number of Let statements followed by a final Expression. It is completely valid to
have a final Expression without any Let statements. The combination of statements and final expression
is called an Expression Block. Expression Blocks can also appear inside Conditional Expressions.

There are several kinds of statements, Let Statements, Context Statements and Final Expression.

Statements are joined together into statement lists. Since GELLO is a declarative language, the order
of statements should not affect the end result, however variables must be defined before they are used
so any let statements defining them will need to be placed earlier in the statement lists before those
variable are used.

The syntax of the statement section of a GELLO program is as follows

GELLO_Program ::= ExpressionBlock

ExpressionBlock ::= StatementList FinalExpression

StatementList ::= StatementList Statement

StatementList ::=

FinalExpression ::= Expression

FinalExpression ::=

Statement ::= LetStatement

Statement ::= ContextStatement

3.4.1 Let Statement

The Let Statement allows a GELLO expression to be assigned to a variable name. It is a very useful
concept in that it allows GELLO expressions to be broken down into meaningful pieces, and also allows
frequently used values to be reused within the GELLO program. A Let Statement can also be referred to
as a Variable Declaration.

GELLO variables differ to those in typical computer languages in that they may only be assigned a value
once which means that GELLO variables are effectively constant for their lifetime. The reason for this is
that GELLO is derived from OCL which belongs to the family of functional languages.

If you are a programmer of commonly used programming languages like C or Pascal, it requires some
rethinking to grasp the ways in which GELLO expressions are written. However, with a little practice
complex GELLO programs can be effectively structured through the use of GELLO variables.

Some examples of Let statements are...

Let a: Integer = 25

let j = observation->select((code.code="2951-2") or (code.code = "2823-

3"))

let alt_ok:boolean =

if alt_obs.isdefined() then

alt_obs.value < alt_obs.reference_range.upper_limit * 2

else

unknown

endif

In GELLO v.1.x, the reserved word "Let" is not case-sensitive. Also, in GELLO v.1.x, the type of the
variable is optional and may be omitted. The type of the variable can be inferred from the expression
which is used to create it. If the type is specified, the assigned expression must be compatible with that
type.

The syntax of Let statements is as follows.

LetStatement ::= <Let> <Identifier> OptionalType "=" Expression

OptionalType ::= ":" Type

OptionalType ::=

3.4.2 Final Expression

The Final Expression must be the last statement in a GELLO program. It is the result of executing the
GELLO program. In GELLO v.1.x, this is currently optional, and when omitted, the GELLO program
returns the undefined expression value.

In the following GELLO program

let a:integer = 50

let b:integer = (a*100 + 20) div 2

a + b

the final expression is the last line

a + b

In typical use, most GELLO programs will contain a Final Expression.

The syntax is

FinalExpression ::= Expression

FinalExpression ::=

3.4.3 Context Statement

The Context statement is still the subject of further research. It is currently implemented in a similar
way to the let statement.

The syntax of a Context Statement is as follows.

ContextStatement ::= <Context> <Identifier> OptionalType <From>

<Expression>

3.5 The Data Model

All GELLO program will have a predefined environment which is available to it. This environment will
contain a list of predefined classes which can be used. When using the GELLO Interactive Debugging
Environment (IDE) you can use the Class Explorer tab to explore the classes available with their
properties and methods (attributes and operations).

Here is a list of some of the classes available....

AbsoluteTime

AbsoluteTimeInterval

Allergy

Allergies

Archetypes

Boolean

CodedValue

ConceptRelationShip

Duration

DurationInterval

Factory

GLIFDecisionResult

GTS

Integer

IntegerInterval

Lib

Medication

Medications

MLM

Model

Module

Modules

Observation

ObservationManager

Observations

ObservationSequence

Output

Patient

PhysicalQuantity

PhysicalQuantityInterval

Provider

Ratio

Real

RealInterval

Reports

SD

SnomedAttribute

SnomedAttributeGroup

String

StructuredNumeric

There are also a number of predefined variables defined.

Name Class
observation Observations
patient Patient
model Model

3.6 Using Collections

One of the most powerful features of GELLO is its ability to work with collections. Typically a data
model has many different collections which can be queried with the collection operators.

It is important to remember that when a collection operator is used, the attributes of the element type of
the collection become available automatically as variables inside the query. This can be seen with one

of our demonstration examples.

context observations: Observations from Model.observations

let sodiums = observations->select(code.name = "Sodium")

sodiums.value

The collection observations from the supplied model has as its elements, values of class Observation.
One of the attributes of an observation is code which of class CodedValue. Inside the select query,
this attribute is made available in the same way as a variable and can be referred to directly. In this
example, we compare the value of each element's attribute code and if its name matches the string
"Sodium", that element is selected and placed into the new collection. The same principle applies to
several collection operators.

Some of the frequently used ones are...

Select Operator

You can create a subset of a collection by using the select operator

collection -> select(boolean-expression)

This will create a new collection of the same type as collection, but only containing elements of the
original collection which match the boolean expression or condition. In our example, the following is the
collection operation select.

observations->select(code.name = "Sodium")

Collect Operator

You can create a new collection based on elements of the collection by using the collect operator.

collection -> collect(sub-expression)

This will create a new collection based on the original collection, but each new element will only be the
value as determined by sub-expression. A short hand for a collect operation when sub-expression is a
single attribute of the element type of the expression is

collection.sub-expression

In our example, the following expressions are identical

sodiums->collect(value)

sodiums.value

3.7 Using Physical Quantities

GELLO v.1.x has included a special type of value called Physical Quantity. These are similar to the
numeric Real type in that one can perform arithmetic on them (+, -, *, / and so forth), however they have
the added property that each Physical Quantity has a units attached to it. This units property is fully
managed by the GELLO framework when performing arithmetic on Physical Quantities. Many predefined
units are included as standard, including most SI units. In the vEMR data model supplied by the
Medical-Objects framework, Physical Quantities are used wherever possible in observations,
medications and so forth.

It is important to remember the following rules when calculating with physical quantities. Units are
compatible if their unit exponents are the same. For example, units of length (metres, feet, inches etc)

are all compatible. As long as there is a conversion from one unit to another, units are also compatible.
All units are formed from base units (e.g. metres, seconds, kilograms, etc)

If A and B are physical quantities:

Addition and Subtraction

Units of A and B must be compatible. If the units of A and B not identical, a units conversion operation
will be made before the calculation. If they are not compatible, a GELLO exception (run time error) will
be produced.

A + B Result.value = A.value + B.convert(A.unit).value, Result.unit = A.unit
A - B Result.value = A.value - B.convert(A.unit).value, Result.unit = A.unit

Multiplication

The unit indices of B are added to those of A. For example if A is in metres (m) and B is in square
metres (m^2) then the result will be in cubic metres(m^3). If there are any conversion factors from the
base units they will be multiplied together. The units do not need to be compatible - however this means
that the result of the multiplication will need to be meaningful to what you are planning to do. If the units
of A and B are not compatible, a derived unit will be formed with the combination of both units.

A * B Result.value = A.value * B.value,

Result.unit.exponent = A.unit.exponent + B.unit.exponent,
Result.unit.scale = A.unit.scale + B.unit.scale

Division

The unit indices of B are subtracted from those of A. For example if A is in cubic metres (m^3) and B is
in metres (m) then the result will be in square metres(m^2). If there are any conversion factors from the
base units they will be conversion(A) / conversion(B).

A / B Result.value = A.value / B.value,

Result.unit.exponent = A.unit.exponent - B.unit.exponent,
Result.unit.scale = A.unit.scale / B.unit.scale

An example of using physical quantities would be Body Mass Index. BMI = W/ H^2

let weight: PhysicalQuantity = factory.physicalquantity(55,'kg')

let height: PhysicalQuantity = factory.physicalquantity(1.02,'m')

let BMI: PhysicalQuantity = weight / (height * height)

"BMI=" + bmi.value.format(1,3) + ', units '+bmi.unit

The results are...

WEIGHT: PhysicalQuantity = 55 kg
HEIGHT: PhysicalQuantity = 1.02 m
BMI: PhysicalQuantity = 52.8642829680892 kgm^-2
Result is BMI=52.864, units kgm^-2

4 Appendices

4.1 GELLO BNF

GELLO_Program ::= ExpressionBlock

ExpressionBlock ::= StatementList FinalExpression

StatementList ::= StatementList Statement

StatementList ::=

FinalExpression ::= Expression

FinalExpression ::=

Statement ::= LetStatement

Statement ::= ContextStatement

LetStatement ::= <Let> <Identifier> OptionalType "=" Expression

IfStatement ::= <If> Expression <Then> StatementList <Else>

StatementList <Endif>

ContextStatement ::= <Context> <Identifier> OptionalType <From>

<Expression>

Type ::= TypeName

Type ::= BasicType

Type ::= CollectionType "(" Type ")"

Type ::= TupleType

BasicType ::= <Integer>

BasicType ::= <String>

BasicType ::= <Real>

BasicType ::= <Boolean>

CollectionType ::= <Set>

CollectionType ::= <Bag>

CollectionType ::= <Sequence>

TupleType ::= <Tuple> "(" TupleTypeList ")"

TupleTypeList ::= TupleTypeList "," TupleTypeElement

TupleTypeList ::= TupleTypeElement

TupleTypeElement ::= <Identifier> ":" Type

TypeName ::= Name

Name ::= Name "." <Identifier>

Name ::= <Identifier>

Expression ::= Expression "and" Expression

Expression ::= Expression "or" Expression

Expression ::= Expression "xor" Expression

Expression ::= Expression "=" Expression

Expression ::= Expression "<>" Expression

Expression ::= Expression "<" Expression

Expression ::= Expression ">" Expression

Expression ::= Expression "<=" Expression

Expression ::= Expression ">=" Expression

Expression ::= Expression "+" Expression

Expression ::= Expression "-" Expression

Expression ::= Expression "*" Expression

Expression ::= Expression "/" Expression

Expression ::= Expression "div" Expression

Expression ::= Expression "mod" Expression

Expression ::= "-" Expression

Expression ::= "not" Expression

Expression ::= Operand

Expression ::= ConditionalExpression

ConditionalExpression ::= <If> Expression <Then> ExpressionBlock <Else>

ExpressionBlock <Endif>

Operand ::= Variable

Operand ::= "(" ExpressionList ")"

Operand ::= LiteralExp

Variable ::= <Identifier>

Variable ::= Variable "." <Identifier>

Variable ::= Variable "(" Params ")"

Variable ::= Query

Variable ::= IterateQuery

Variable ::= Variable "." "size" "(" ")"

IterateQuery ::= QueryVarOp "iterate" "(" iteratorID OptionalType ","

initializerID OptionalType "=" Expression "|"

Expression ")"

QueryVarOp ::= Variable "->"

OptionalType ::= ":" Type

OptionalType ::=

iteratorID ::= <Identifier>

initializerID ::= <Identifier>

Query ::= SelectionQuery

Query ::= ListObjQuery

Query ::= GetQuery

Query ::= NonParamQuery

Query ::= SingleObjQuery

Query ::= SetQuery

Query ::= JoinQuery

SelectionQuery ::= SelectionQueryHead "(" Expression ")"

SelectionQuery ::= SelectionQueryHead "(" <Identifier> OptionalType "|"

Expression ")"

SelectionQueryHead ::= QueryVarOp SelectionQueryName

SelectionQueryName ::= <Identifier>

SelectionQueryName ::= "select"

SelectionQueryName ::= "reject"

SelectionQueryName ::= "collect"

SelectionQueryName ::= "forAll"

SelectionQueryName ::= "exists"

ListObjQuery ::= QueryVarOp "includesAll" "(" ExpressionList ")"

ListObjQuery ::= QueryVarOp "sortBy" "(" ExpressionList ")"

GetQuery ::= QueryVarOp "firstN" "(" Expression ")"

GetQuery ::= QueryVarOp "lastN" "(" Expression ")"

GetQuery ::= QueryVarOp "elemAt" "(" Expression ")"

NonParamQuery ::= QueryVarOp "size" "(" ")"

NonParamQuery ::= QueryVarOp "isEmpty" "(" ")"

NonParamQuery ::= QueryVarOp "notEmpty" "(" ")"

NonParamQuery ::= QueryVarOp "sum" "(" ")"

NonParamQuery ::= QueryVarOp "reverse" "(" ")"

NonParamQuery ::= QueryVarOp "min" "(" ")"

NonParamQuery ::= QueryVarOp "max" "(" ")"

NonParamQuery ::= QueryVarOp "flatten" "(" ")"

NonParamQuery ::= QueryVarOp "first" "(" ")"

NonParamQuery ::= QueryVarOp "last" "(" ")"

NonParamQuery ::= QueryVarOp "average" "(" ")"

NonParamQuery ::= QueryVarOp "stdev" "(" ")"

NonParamQuery ::= QueryVarOp "variance" "(" ")"

SingleObjQuery ::= QueryVarOp "count" "(" Expression ")"

SingleObjQuery ::= QueryVarOp "includes" "(" Expression ")"

SingleObjQuery ::= QueryVarOp "including" "(" Expression ")"

SingleObjQuery ::= QueryVarOp "excluding" "(" Expression ")"

SetQuery ::= QueryVarOp "intersection" "(" Expression ")"

SetQuery ::= QueryVarOp "union" "(" Expression ")"

JoinQuery ::= QueryVarOp "join" "(" ExpressionList ";" ExpressionList

";" Expression ";" ExpressionList ")"

Params ::= ExpressionList

Params ::=

ExpressionList ::= ExpressionList "," Expression

ExpressionList ::= Expression

LiteralExp ::= CollectionLiteralExp

LiteralExp ::= TupleLiteralExp

LiteralExp ::= PrimitiveLiteralExp

CollectionLiteralExp ::= CollectionType "{" CollectionLiteralParts "}"

CollectionLiteralExp ::= CollectionType "{" "}"

CollectionLiteralParts ::= CollectionLiteralParts ","

CollectionLiteralPart

CollectionLiteralParts ::= CollectionLiteralPart

CollectionLiteralPart ::= Expression

CollectionLiteralPart ::= CollectionRange

CollectionRange ::= Expression ".." Expression

TupleLiteralExp ::= <Tuple> "{" TupleDefList "}"

TupleDefList ::= TupleDefList "," TupleDef

TupleDefList ::= TupleDef

TupleDef ::= <Identifier> ":" Type "=" Expression

TupleDef ::= <Identifier> "=" Expression

PrimitiveLiteralExp ::= <IntegerConstant>

PrimitiveLiteralExp ::= <RealConstant>

PrimitiveLiteralExp ::= <SringConstant>

PrimitiveLiteralExp ::= <True>

PrimitiveLiteralExp ::= <False>

<Let: "Let"|"let">

<If: "If"|"if">

<Then: "Then"|"then">

<Else: "Else"|"else">

<Endif: "Endif"|"endif">

<Conclude: "Conclude"|"conclude">

<Continue: "Continue"|"continue">

<Integer: "Integer"|"integer">

<Real: "Real"|"real">

<String: "String"|"string">

<Boolean: "Boolean"|"boolean">

<Set: "Set"|"set">

<Bag: "Bag"|"bag">

<Sequence: "Sequence"|"sequence">

<Tuple: "Tuple"|"tuple">

<True: "True"|"true">

<False: "False"|"false">

<IntegerConstant: (["0"-"9"])+ >

<RealConstant: (["0"-"9"])+ "."(["0"-"9"])* (["E"|"e"](["+","-"])?

(["0"-"9"])*)? >

<StringConstant: ("\'"(~["\'",\n,\r])* "\'" | "\"" (~["\"","\n,\r])*

"\"") >

<Identifier:

["A"-"Z","a"-"z","_"](["A"-"Z","a"-"z","_","0"-"9"])* >

