
Peter R. Tattam, B.Sc.
Andrew McIntyre, M.B.B.S. (Hons)

F.R.A.C.P.
http://www.medical-objects.com.au

peter.tattam@medical-objects.com.au

GELLO, A Practical Implementation through the
Application of Real World Examples

http://www.medical-objects.com.au/
http://www.medical-objects.com.au/

Choice of GELLO for decision support

 Project to build advanced decision support and registry
reporting tools for the treatment of Lymphoma.

 GLIF was vehicle for Guidelines.
 Decision was made to use GELLO encoded logic.
 Originally envisaged that Arden would be the vehicle, however

further investigation suggested that GELLO would be a better
candidate to evaluate the clinical data to assist relevant
decisions.

 GELLO features
 Rich querying facilities.
 Object oriented
 Integrates well with HL7

 Implemented what we believe to be one of the first practical
implementations of GELLO worldwide.

Working with GELLO specifications

 GELLO is a work in progress
 Developed in coordination with HL7 Decision

Support Group
 Based on OCL 2.0
 Started in Dec 2003
 Most recent draft of specification dated May 2005
 Mailing list started Dec 2006 with active discussion
 Implementation raised many issues with

specifications

Limitations with GELLO Language and Grammar

 Typographical errors
 Incomplete language elements
 Incorrect language elements
 Ambiguous constructs
 Discrepancies between grammar and examples used
 Semantic limitations of the language
 Typically formal grammar and actual grammar differ in

practice due to implementation details
 Even so, formal grammar in specification is incorrect,

incomplete and does not even parse the examples in the
specification

Minor Corrections

 Had to cut & paste grammar from HTML document
 Built a tool to process the BNF into a useful form
 Found syntax errors in the BNF and corrected.

 Misspellings
 Fixed by inferring correct names.

 Undefined and unused symbols using reachability analysis
 Symbols “GELLOType”, “ReferenceToClass” undefined

 Fixed by changing “GELLOTypes” to “GelloType”, and adding “ReferenceToClass” to point
to “ReferenceToInstance”

 Symbols <IMPLIES>, <NEW>, <ENDCONTEXT> unused
 Fixed by including <IMPLIES> in “ConditionalExpression”, and omitting <NEW> and

<ENDCONTEXT>
 Syntax errors in terminal regular expressions

 Fixed
 Fixed errors in some of the terminal regular expressions

 <DECIMAL_LITERAL> only generated numbers without digit “0”!!
 <REAL_LITERAL> is ambiguous with <INTEGER_LITERAL>
 <NUMBER> was removed by simplifying grammar.

Completing the Language

 Various Elements in language appear to be stubs
 Referred back to OCL to figure out what elements should look like
 Elements fleshed out

 “CollectionLiteral” defined
CollectionLiteral::= CollectionType "{" (CollectionLiteralElement (","

CollectionLiteralElement)*)? "}"
CollectionLiteralElement::= Expression (".." Expression)?

 “TupleLiteral” defined
TupleLiteral::= <TUPLE> "{" TupleLiteralElement ("," TupleLiteralElement)* "}"
TupleLiteralElement::= <ID> ":" GELLOType "=" Expression

 “EnumerationType” extended
EnumerationType::= <ENUM> "(" <ID> ("," <ID>)* ")"

 “CollectionType” extended
GELLOType::= BasicType
 | CollectionType "(" GELLOType ")"
 | TupleType
 | EnumerationType

Trivial Extensions to language

 Added comments
 // A comment to end of line.
 /* A comment which is

 more than one line.
*/

 Allow “ to be used synonymously with ‘ for strings
 Generalized parameters to standard functions to be

“Expression”s rather than specific typed literals.
 Allow identifiers to be case insensitive.

Significant Enhancements to Language

 Many of the examples refer to lists of Statements rather than a single GELLO Expression or Statement.
 Based on implementation experience and recent discussions on the mailing list, a significant extension

to allow for multiple declarative statements to be specified.
 These issues were resolved by the following constructs:

 Introduction of “Block” construct.
GELLOExpression::= Block
Block::= Declarative* ExpressionNP
Declarative::= LetStatement
 | ContextNavigationStatement

 Redefining “IfStatement” and “ComparisonExpression” and introducing “IfExpression”
IfStatement::= <IF> Expression <THEN> Block <ELSE> Block <ENDIF>
ComparisonExpression::= IfExpression (<EQUAL> IfExpression |
 <NEQ> IfExpression | <LT> IfExpression |
 <LEQ> IfExpression | <GT> IfExpression |
 <GEQ> IfExpression)*
IfExpression::= AddExpression
 | IfStatement

 Resolution of no statement separator
 The introduction of multiple statements introduced a difficulty in the grammar in that statements do not have a terminator or

separator (e.g. “;”).
 Problem occurs when two GELLO expressions appear next to each other within the language.
 Resolved by restricted form of Expression in the grammar

 Included the [and] operators to index into collections.
 By reference to OCL V2.0
 Shorthand method for the ElemAt() collection operator

Unambiguous Grammar Constructs

 Many of the constructs as defined in the original specification result in a highly ambiguous grammar.
 Constructs which look superficially correct for descriptive purposes end up generating an ambiguous

grammar.
 The importance of an unambiguous grammar is two-fold

 Being able to specify the language in a portable way to a wide range of users and implementers
 Being able to generate practical parsers for the language

 A great deal of time was spent trying to resolve the ambiguous nature of the GELLO language as
specified by the original grammar.

 The general nature of the ambiguities fell into several categories
 Places where one construct overloaded another.

 E.g. when a “Name” and an <ID> were derivable in the same place.
 Places where one construct next to another resulted in an ambiguity i.e. when an “Expression” appeared next to another

“Expression”. These two examples are identical syntactically but have different meaning
 Example 1.

Let A: Integer = C + D
(A * 20)

 Example 2.
Let A: Integer = C + D(A *20)

 The changes to resolve the ambiguities were many and varied. The more significant of these are
 A restricted form of “Expression”, “ExpressionNP” which does not start with “(“, “+” or “-”.
 Introducing the “Operand” construct from which variable references, attribute references, method operators and collection

operators are formed.

Rich HL7 infrastructure

 The GELLO and GLIF modules have been built to operate over
a Rich HL7 infrastructure developed over many years by
Medical-Objects

 HL7 version 3 Data Model (RIM) is incorporated into GELLO
 Observation
 Patient
 Medication

 Model data and GELLO results visible from IDE
 Can dynamically bind Model data to GELLO infrastructure
 Uses Windows COM to manage data ownership.
 Also includes SNOMED engine access.
 Supports concept of Medical Logic Modules (MLM) as in

Arden

Embedded GELLO

 The GELLO as implemented by MO-GELLO
has been developed as an embedded
component within a GLIF and Archetypes
framework.

 It was developed using a LALR(1) parser
framework in conjunction with a Delphi Object
Pascal HL7 framework.

 It is interpretive in nature.
 Gello expressions are compiled at run time and

stored as an internal object oriented expression
tree.

 Execution speed is facilitated by the use of
object oriented techniques.

 There is no “byte code” to execute, all calls are
made natively to the HL7 framework.

 GELLO expressions can be implemented using
an embedded IDE called “Mowgli”.

 Library facilities have been developed whereby
frequently used GELLO expressions can be run
indirectly from within another GELLO
expression

References

The GELLO Specification
Medical-Objects GELLO
Original GELLO Grammar
Revised GELLO Grammar

http://dsg.bwh.harvard.edu/~msordo/GELLO/GELLO-073105short.htm
http://www.medical-objects.com.au/GELLO/tabid/407/Default.aspx
http://www.medical-objects.com.au/LinkClick.aspx?link=Presentations/Gello_original_BNF.txt
http://www.medical-objects.com.au/LinkClick.aspx?link=Presentations/Gello_revised_BNF.txt
http://www.medical-objects.com.au/

